题目:六位同学围坐着,中间一人眼睛被蒙住。各人头上戴一顶帽子,四个白的,三个黑的。因为中间一个挡住了视线,六个人都看不见自己对面的人戴的是什么颜色的帽子。现在让各人猜自己头上戴的是什么颜色的帽子。六个人在沉思着,一时猜不出来,中间被蒙住眼睛的人反而说话了:“我头上戴的帽子是白的。”他是怎么知道的呢?
解答:根据围坐的学生都在沉思,坐在中间的学生可以推测,三组对面而坐的人,一定是三个人头上戴白帽,三个人头上戴黑帽。那么,自己头上戴的当然是白帽子了。如果你一时无法解答这个难题,你可以假设自己是围坐的学生之一。你能看见五个人头上戴的帽子,如果你看到这五个人中有四个人戴的白帽,只有一人戴的是黑帽,就会猜到自己和对面的人都戴的黑帽,如果你看到只有两个人戴白帽,就会猜到自己和对面人都戴的白帽。只有当你发现还有一白一黑分别戴在你和对面人头上时,你可能就无法判断自己戴的是什么颜的帽子了。其他围坐的人也都在沉思着,那么,中间的人按这个逻辑推测,会得到自己戴白帽子的结论。
2. 帽子颜色(逻辑推理题)
如果自己戴的也是红色帽子,一共就两顶红色帽子,第三个人就能猜到自己就是黑色帽子了,但是那个人没有反应说明没有猜出来,说明自己不是红色帽子,那么就是黑色帽子了!
3. 猜帽子颜色的智力问题
放下手的女人是这样推理的:
她想:“如果我的帽子是白色的,另外的两个女人会怎么想呢?她们会想:‘已经有一个女人的帽子是白的了,如果我的帽子也是白的,那么就不可能3个人都举起手了,所以我的帽子是红的',所以就有人能立即判断出来并放下手,但是没有人放下,说明我的帽子不是白的,而是红的!” 于是就推理出来了!
这是道逻辑推理学的典型例题,是利用换位思考的方法推理出来的!楼上两个说的什么啊,这是逻辑推理题,不是闹经急转弯……而且还抄袭……
4. 智力题:猜帽子的颜色
D能看见BC的帽子,C能看见B的帽子。因为按同一方向坐,如果D先说勒自己帽子的颜色,就证明BC帽子的颜色是一样。 如果没说的话,就知道C和B的帽子颜色不一样,而B的帽子是黄色,显然C的帽子是红色。当C说出答案后B自然就知道自己的帽子的颜色,这样就解开了。
5. 帽子的颜色问题讲的是什么呢
(1)有三顶红帽子,两顶白帽子,现将其中三顶给排成一列纵队的三人每人戴上一顶,每人都只能看到自己前面的人的帽子,而看不到自己和自己后面人的帽子。从后往前问三人同样的问题:“你戴的帽子是什么颜色?”最后面的人回答说:“不知道。”接着中间的人也说:“不知道。”然而最后回答问题的站在最前面的人却做出了肯定的正确回答。问这个人戴的帽子是什么颜色?回答这个问题需要做正确的逻辑分析。
在提问后,最后面的人回答“不知道”,从中可断定以下事实:
前面两个人中至少有一个戴红色帽子。不然的话,如果前面两人均戴白帽子,而白帽子只有两顶,最后面的人就会知道自己戴红帽子,不会说不知道。这个事实中间的人也可得知,在此基础上他又回答“不知道”,那么一定是最前面的人戴着红帽子。不然的话,最前面的人若戴白帽子,因他与中间的人两人中至少有一个戴红帽子,那中间的人就一定戴红帽子了,中间的人也不会说不知道。于是,最前面的人戴红色帽子是正确结论。
在这个帽子的颜色问题中,戴着帽子回答问题的三个人应是聪明人,都能正确地进行逻辑推理,并作出正确的判断。如果有一个智力有问题,或胡乱猜测随便回答,那么整个事情就无法正确解释了。
此问题是一个传统的逻辑推理问题,人们经常利用这样的问题考察智力,既要看会不会推理,又要看整个推理过程是不是简明,还要看推理用的时间。在一个好的问题面前,可以充分显示人的思维能力。
中国著名数学家华罗庚对上述帽子的颜色问题作了改造,提出下面的问题:
(2)一位老师让三位聪明的学生看了一下事先准备好的五顶帽子:三顶白色的,两顶黑色的。然后让他们闭上眼睛,他替每个学生戴上一顶帽子,并把其余两顶藏起来,让学生睁开眼睛后各自说出自己戴的帽子的颜色。三人睁眼互相看了一下,踌躇了一会儿,觉得为难,继而异口同声地说自己头上戴的是白帽子。问他们是怎样推演出来的?先看戴帽情况,有两黑一白、两白一黑、三白共三种情况。
若第一种情况,戴白帽子的学生一看便能说出自己戴的帽子颜色,而实际上三人睁眼互相看了一下,踌躇了一会儿,没一人马上说出,这表明这种情况是不符合现实。
这样三人都明白其中至多只有一人戴黑帽子,如果有一人戴黑帽子,另外两人必会立刻说出自己戴着白色帽子,而不会踌躇且觉得为难。三人均为难说明谁也没有看见有人戴黑色帽子,那么三人戴的都是白色帽子。于是三位聪明学生便异口同声说出自己戴的帽子的颜色。
这个问题初看似乎感到条件不足,然而细一琢磨,“踌躇了一会儿,觉得为难,继后异口同声地说”里面涵义丰富,奥妙无穷。建立在这条件上,便可展开如上推理,层层深入,环环紧扣。
华罗庚推出这一改编的问题,让人深深体会到了数学大师的内在功力,其中表现出高超的思维技巧。
如果把人数增多,还可提出类似的问题:
(3)四个爱动脑筋的小朋友接受老师的智力测验,看谁能最快最准确地回答问题。老师让他们都闭上眼睛,给他们每人戴上一顶帽子,或者是白的,或者是蓝的。然后让他们睁开眼睛,告诉他们:“谁看到的白帽比蓝帽多就马上举手。然后各位说出自己戴的帽子颜色。”大伙互相看了一下(每个人都看不见自己戴的帽子,但能看清别人戴的帽子),谁也没举手,过了一会儿,也没有人说出自己戴的帽子颜色,其中一个叫小光的学生见大家都不说话,就猜出了自己头顶上的帽子颜色。问小光戴的是什么样的帽子。
再来分情况考虑。
如果恰有两个人戴白色帽子,另外两人都会看到两顶白帽,一顶蓝帽。他俩会同时举起手,而实际上无人举手,这表明在四个学生中最多只有一人戴白帽子。
如果只有一个学生戴白帽子,另外三人都会看到一顶白帽,两顶蓝帽,谁也不会举手。戴白帽子的人看到的是三顶蓝帽,也不会举手。三个戴蓝帽的人会想到:“我已看到一顶白帽子,如果我戴的也是白帽,就会有两人举手,而事实上没有举手,说明我戴的是蓝帽。”
可是,仍然没有人举手,这就说明一顶白帽也没有,四人戴的都是蓝帽子。
6. 一道经典的推理题 - 黑白帽子问题
1.假定只有一顶黑帽子,那么戴黑帽子的人看到其他人都是白帽子后就知道了自己是黑帽子,所以他会在第一次关灯打耳光。
2.如果没有人在第一次关灯打耳光,说明黑帽子数≥2,那么戴黑帽子的人A看到场上只有一顶黑帽子B,而第一次关灯没有人打耳光,说明B看到自己不是唯一的黑帽子,A就知道了自己是黑帽子。
3.如果没有人在第二次关灯打耳光,说明黑帽子数≥3,所以C看到两个黑帽子AB没有打耳光,他就能确定自己是黑帽子。
结论,如果有n顶黑帽子,就会有n个人在第n次关灯打耳光
7. 逻辑推理——猜帽问题
答案红帽!
推理:A回答不知道,表示A看到的帽子肯定不是两顶白帽,也就表示B和C当中至少有一人带的是红帽。
B想一想才回答不知道,表示B看到C的头上带的肯定不是白帽,因为“B和C至少有一人带的是白帽”那也就表示,要是C带红帽的话,那么B就可定是红帽了。
所以C是根据这一点才判断出自己头上带的是红帽!
8. 经典智力题——帽子颜色问题
若第三个人知道他戴的帽子,那么就只有一种可能性:前面两个人戴的是白帽子,他是黑帽子。这样第二个人也就知道他戴了白的,第三个人也就知道了。
但是如果第一个人不知道,那么前面两个人中至少有一人是黑帽子,此时如果第二个人知道,那就只有一种可能:第一个人是白帽子,他是黑帽子。
实际上第二个人不知道他自己是什么帽子,那么他肯定是看到了前面的人戴的是黑帽子。(因为他和第一个人中肯定有一个人戴的是黑帽子,若第一个人是白色的,那他肯定是黑色的,但是第一个人如果是黑色的,那他就不知道他是什么颜色的了)
这样听到后面两个人的回答都是:不知道的时候,第一个人就能猜出他戴的是黑帽子了
三人从后到前表示为:3,2,1
若3知, 则:3(黑),2(白),1(白)
若3不知,则:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,则只有一种情况:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面两种情况:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不论以上两种中的那种情况第一个人都可以得出结论:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一个可能性而已。
9. 逻辑推理:有5顶帽子,2顶红的,3顶黑的。拿其中3顶给3个人戴上(不让他们看到自己戴的帽子颜色),
假设甲乙丙三个人,如果是甲猜出的情况,分析如下:
情况1、甲乙都看到丙戴红帽子,如果乙是红帽子,甲就会很快猜出自己是黑帽子。
10. 白红帽子和黑帽子逻辑推理
C戴的是红颜色的帽子.
C可以看到A、B帽子的颜色,首先可以肯定,AB两人不可能同时戴着白帽子,否则C就会知道自己戴的是红帽子;其次,如果C戴的是白帽子,对A来说,同上理,他看定看到B戴的是红帽子,才会不知道自己戴的是什么颜色的帽子;最后,也是最关键的,对B来说,以A的逻辑推理,如果他看到C戴的是白帽子,而A又不知道自己帽子的颜色,则B就能肯定自己戴的是红帽子,因此与题目中B不知道自己帽子的颜色相驳,所以,C戴的是红颜色的帽子.