A. 服装上 平车线的单耗怎么算
首选要知道你的针距要求是多少,一英寸多少针。做针织T恤一般是12针一英寸。把电车调好针距,在面料上车10CM 长,然后再把线拆下来量一下线就知道,每10CM用线多长。最后就把样衣上的所有车线量下总共有多长就知道啦!一个线有2500米长3000、3500、4000长。
B. 做羽绒服做跑胆充绒行线工时费怎么算的
男女装不一样,而且充绒的时候,50绒和90绒充绒费又不一样,反正淘宝上那些价格低于100的羽绒服,不用考虑,肯定不是什么好绒,真是90绒加上布料加上工费,100多,成本都不够,现在人工太贵了
C. 如果要生产24607件衣服,给出用线单耗为222.0000米,那么此单要用多少线呢我要怎么计算。
一个线是3000码,你算出一个线能做几件衣服就好了啊
D. 羽绒服充绒量多少合格
充绒量不是衡量羽绒品质的指标,它是指一件羽绒服填充的全部羽绒的重量。一般户外羽绒服的充绒量根据目标设计的不同在250-450克左右。
裁片充绒量(g)=(总充绒量(g)÷总裁片面积/㎡)×裁片面积/㎡
裁片面积㎡=裁片高m×裁片宽m
总裁片面积㎡=所有需要充绒裁片面积㎡累加的总和
1、为了能够保证每件羽绒服充绒时,所有的裁片充绒量均匀,所以在充绒前要将所有需要充绒的裁片面积合理的计算出来,合理计算面积指的是,不能按裁片现有的长×宽,如果那样计算裁片的面积是偏大不准确的,确定裁片的合理的面积,
2、所有防逃里布的裁片都是面布的二倍,如:
前幅面×2
防逃里×4
后幅面×1
防逃里×2
如此类推
因为内胆(防逃里)是双层合缝间线夹在面布与里布的中间,内胆防逃里是为了防止衣服车缝好后羽绒从针缝渗出
充绒量选购
一看:查看有无产品质量标签,标签上有无生产厂名,含绒量为多少。羽绒服的含绒量一般以超过70%为宜,具有一定的蓬松度和轻柔度。充绒量多少直接影响羽绒服的保暖度,消费者应根据自己的穿着需求来确定。
二按:将蓬松的羽绒服放松铺平,用手按压,随即松开,看羽绒服能否迅速恢复原状。如果不能恢复原样或恢复较慢,说明绒质较差,含绒量较低。
三摸:用手摸、捏羽绒服,查看有无完整的小毛片或过大过粗的长毛片、羽毛管等。如果手感柔软但回弹性差,说明填充物大多为软化毛片而非羽绒;如果手感柔软但有短小粗硬的羽轴,则为粉碎片,这种服装的保暖效果不佳。
四揉:用双手揉搓羽绒服,看是否有毛绒钻出。如果有大量毛绒钻出,说明面料不防绒。由于羽绒具有柔滑的特性,有少量的绒丝从线缝中溢出也是正常的。
五闻:用鼻子靠近羽绒制品,深呼吸数次,避免选购那些味重刺鼻的商品。
E. 一般的羽绒服含绒量多少克
一般的羽绒服含绒量为80%以上,含绒量是绒子和绒丝在茸毛羽绒中的含量百分比,使用百分数来表示的,不是用克来表示的。我国的国家标准羽绒服含绒量的及格线是50%。
4、看裁剪
检查完充绒量,试过蓬松度,测试过填充物之后,我们还要看一下裁剪情况,如果用于固定羽绒的格子很多,而且是越多越好,如果不这样选择的话,洗过几次后,羽绒就可能会结团,下垂呈葫芦状。
F. 羽绒服充绒量标准多少
羽绒服的含绒量不得低于50%,不足50%的不能称作羽绒服。充绒量允许偏差规定为-5%,一般羽绒服的充绒量根据目标设计的不同在100-450克左右。
充绒量是衡量羽绒品质的指标,一件羽绒服填充的全部羽绒的重量。在保证“含绒量”的条件下,南方一般成人羽绒服的“充绒量”应达到100克以上,北方一般羽绒服的“充绒量”应达到200克以上,这样羽绒服才能起到较好的保暖效果。
按照我国羽绒服的标准规定,羽绒服的含绒量不能低于50%,充绒量允许偏差规定为-5%。一般羽绒服的充绒量根据目标设计的不同在100-450克左右。
充绒特点:
1、羽绒的充绒结构特点决定羽绒服保暖而轻盈的特征。
2、羽绒是非常不容易发生纤维板结现象的,因此羽绒在被面料包围时,会形一个个成立体盒状结构和双层夹片结构的小空间,这也就是我们常说的充绒结构。
3、对于立体盒状结构,它的优点就在于羽绒分布均匀,不会有冷桥效应,但是制作工序复杂,并且羽绒服装的重量也会大大增加;而双层夹片结构的有点在于衣服的重量轻盈,但是在缝合的位置容易出现缺绒的现象,易被风吹透,因此一般用在内穿羽绒服中。
4、一件羽绒服的结构空间越小,就说明充绒量越多或者羽绒分布越均匀,但各种结构都存在一定的优点与缺点,所以不同结构适用于不同穿着方式的羽绒服。
G. 羽绒服烘干温度多少合适
40°温度,温度如果选择错误也是事故较多原因,棉、麻、化学纤维,我们基本上都是采用中温烘干即可,温度过高会导致纤维抽缩与变色现象;羽绒服烘干时,采用低温烘干,羽绒如果受热过高,会引起羽绒收缩,不但影响羽绒服蓬松度,还会影响到羽绒服的保暖性能。
烘干机还有一个非常重要的功能,那就是具有杀毒的作用。普通的晾晒衣服虽然把水分带走了,衣服中的细菌会残留在里面,如果使用烘干机的话细菌被高温杀死了,有效地解决了身体健康的问题。
(7)羽绒服线单耗是多少扩展阅读:
羽绒服烘干注意事项
1、毛领
如果洗涤的衣物是真毛皮领,能够拆卸下来的,我们建议拆下最好采用干洗,无法拆下的洗涤时注意选用中性洗涤剂洗涤,水温在30度以下。用手轻轻在温水中揉搓即可。晾挂毛领时要注意放在通风处,自然滴干,不要拧干或是甩干,会损害毛发。
干洗后,烘干真皮毛领注意烘干温度,如果温度过高,会导致皮板发硬与抽缩现象。假毛领(人造纤维毛领)在烘干时注意温度或者不烘干,因为人造毛领经过烘干后,一般会出现绒毛蜷缩状况,几乎都是破坏性蜷缩,无法恢复。
2、拉链
拉链也是烘干过程中最容易出现的事故,在烘干之前,我们最好把拉链用白色棉布条把拉链包好,才可以进行烘干,或者是采用针线把拉链进行固定方式,对于拉链不是特别尖、特别有棱角的,可以把衣物翻过来烘干,避免划伤衣物。
H. 单耗怎样计算
小学至初中数学所有公式
祝愿宝宝们:好好学习,天天向上.
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数= 1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a
2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6
体 积=棱长×棱长×棱长 V=a×a×a
3、长方形:
C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形
s面积 a底 h高 面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6、平行四边形:s面积 a底 h高 面积=底×高 s=ah
7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形:S面 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体:v体积 h:高 s:底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 闰年 2月29天
平年全年365天, 闰年全年366天
1日=24小时 1小时=60分
1分=60秒 1小时=3600秒
小学数学几何形体周长 面积 体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
常见的初中数学公式
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形
全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角
所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的
一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直
平分线
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,
那么交点在对称轴上
45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两
个图形关于这条直线对称
46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,
即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,
那么这个三角形是直角三角形
48 定理 四边形的内角和等于360°
49 四边形的外角和等于360°
50 多边形内角和定理 n边形的内角的和等于(n-2)×180°
51 推论 任意多边的外角和等于360°
52 平行四边形性质定理 1 平行四边形的对角相等
53 平行四边形性质定理 2 平行四边形的对边相等
54 推论 夹在两条平行线间的平行线段相等
55 平行四边形性质定理 3 平行四边形的对角线互相平分
56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
60 矩形性质定理 1 矩形的四个角都是直角
61 矩形性质定理 2 矩形的对角线相等
62 矩形判定定理 1 有三个角是直角的四边形是矩形
63 矩形判定定理 2 对角线相等的平行四边形是矩形
64 菱形性质定理 1 菱形的四条边都相等
65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66 菱形面积=对角线乘积的一半,即 S=(a×b)÷2
67 菱形判定定理 1 四边都相等的四边形是菱形
68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形
69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等
70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每
条对角线平分一组对角
71 定理1 关于中心对称的两个图形是全等的
72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被
对称中心平分
73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,
那么这两个图形关于这一点对称
74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75 等腰梯形的两条对角线相等
76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77 对角线相等的梯形是等腰梯形
78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,
那么在其他直线上截得的线段也相等
79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果 a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果 a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)
/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成
比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得
的应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线
段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的
三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,
所构成的三角形与原三角形相似
91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理 3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的
比都等于相似比
97 性质定理 2 相似三角形周长的比等于相似比
98 性质定理 3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的
余角的正弦值
100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的
余角的正切值
101 圆是定点的距离等于定长的点的集合
102 圆的内部可以看作是圆心的距离小于半径的点的集合
103 圆的外部可以看作是圆心的距离大于半径的点的集合
104 同圆或等圆的半径相等
105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107 到已知角的两边距离相等的点的轨迹,是这个角的平分线
108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等
的一条直线
109 定理 不在同一直线上的三点确定一个圆。
110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111 推论 1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112 推论2 圆的两条平行弦所夹的弧相等
113 圆是以圆心为对称中心的中心对称图形
114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,
所对的弦的弦心距相等
115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦
心距中有一组量相等那么它们所对应的其余各组量都相等
116 定理 一条弧所对的圆周角等于它所对的圆心角的一半
117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角
所对的弧也相等
118 推论 2 半圆(或直径)所对的圆周角是直角;90° 的圆周角所对的弦
是直径
119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是
直角三角形
120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对
角
121 ①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切
线
123 切线的性质定理 圆的切线垂直于经过切点的半径
124 推论 1 经过圆心且垂直于切线的直线必经过切点
125 推论 2 经过切点且垂直于切线的直线必经过圆心
126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和
这一点的连线平分两条切线的夹角
127 圆的外切四边形的两组对边的和相等
128 弦切角定理 弦切角等于它所夹的弧对的圆周角
129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线
段的比例中项
132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆
交点的两条线段长的比例中项
133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两
条线段长的积相等
134 如果两个圆相切,那么切点一定在连心线上
135 ①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136 定理 相交两圆的连心线垂直平分两圆的公共弦
137 定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆
的外切正n边形
138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139 正n边形的每个内角都等于(n-2)×180°/n
140 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141 正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142 正三角形面积 √3a/4 a表示边长
143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因
此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144 弧长计算公式:L=n兀R/180
145 扇形面积公式:S扇形=n兀R^2/360=LR/2
146 内公切线长=d-(R-r) 外公切线长= d-(R+r)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注: (a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h'
正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l
球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h
圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r>0 扇形公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h