『壹』 同事出了个推理题,觉得蛮有意思,分享给大家:有5顶帽子,3黑2白。三个聪明人戴
1.首先考虑,如果两个人都戴黑帽子,而自己戴白帽子机率最大,首先想到的是自己戴白帽子.如果他喊出白帽子,就等于告诉了对方答案.所以三人都考虑了很久,等待对方作答,这只能说明他们全戴黑帽子.. 2.同上,乙和丙报出了自己可能是白帽子,告知了甲肯定了答案..
『贰』 圣诞节晚会上,扮成圣诞老人的爱因斯坦给孩子们出了一道逻辑推理题: 有5顶帽子,两顶红的
他看见对方戴红帽子,判断出自己戴黑帽子。分析:3人中一个人头上戴的是红帽子,那剩下的4顶帽子是“1红3黑”,分配给那两个人,那么当其中一个人看见另一个人的帽子是黑颜色时,剩下的帽子是“1红2黑”,即自己所戴的帽子可能是红的或黑的。而若看见对方的帽子是红颜色时,则剩下的3顶帽子必是黑颜色的,则自己所戴的帽子是黑帽子。
可以的话请给好评谢谢!
『叁』 经典帽子问题,5个人
上面的答案似乎符合题意,但是肤浅,不符逻辑。 现在提供这种推断:假如A戴蓝帽子,他看见B.C戴的帽子可能是两红或者是一红一蓝。这样他都不能判断,所以他不知道自己帽子的颜色。B看见A戴蓝帽子的情况下,自然也可以推断出“B.C戴的帽子可能是两红或者是一红一蓝”这种情况。如果他看见C戴蓝帽子,他就可以知道自己是戴红帽子。但是依题可知,他是看见了C戴红帽子,所以他也还不能判断自己帽子的颜色。C看见A戴蓝帽子的情况下,自然也能有B一样的推断,所以他知道自己是戴红帽子的。 所以答案是 A戴蓝帽子,B戴红帽子,C戴红帽子。
满意请采纳
『肆』 帽子颜色(逻辑推理题)
如果自己戴的也是红色帽子,一共就两顶红色帽子,第三个人就能猜到自己就是黑色帽子了,但是那个人没有反应说明没有猜出来,说明自己不是红色帽子,那么就是黑色帽子了!
『伍』 推理题,这题答案是B,谁能分析一下
这个人肯定是E,因为他可以看到前面4个人的帽子。他看到前面的人都戴了白帽子,白帽子用完了,他戴了红色的。
望采纳,谢谢
『陆』 逻辑推理:有5顶帽子,2顶红的,3顶黑的。拿其中3顶给3个人戴上(不让他们看到自己戴的帽子颜色),
假设甲乙丙三个人,如果是甲猜出的情况,分析如下:
情况1、甲乙都看到丙戴红帽子,如果乙是红帽子,甲就会很快猜出自己是黑帽子。
『柒』 三个人,五顶帽子,三个蓝色,两个红色,问第三个人的颜色,为什么
得从三的心理入手,一不知道自己的色,所以二三不为双红,可能为一红一蓝,或双蓝。二被一问是否知自己色,且可见三的色,此处两种情况,若三为红,二应该马上意识到自己为蓝(若为红则一知自己的色然而一却犹豫了),而题设的二却回答不知道,说明假设错误,既三为蓝,二跟一都不清楚自己的色。队列顺序为三在前二在中一垫尾。
『捌』 三个人戴五帽 的逻辑推理
三个人,站成一排.有五个帽子,三个蓝色,两个红色,每人带一个,各自不准看自己的颜色.第一个人站在排的最后,他可以看见前二个人的帽子的颜色,第二个人可以看见前一个人的帽子的颜色.然后问第一个人带的什么颜色的帽子,他说不知道,然后又问第二个人带的什么颜色的帽子,同样说不知道,又问第三个人带的是什么颜色的帽子,他说我知道.问第三个人带的是什么色帽子?
是这个题吗?
第一个人纵观全局,然而他不知道自己的帽子颜色,所以第一个人看到的帽子不会是两个红色的,只会是一红一蓝或者两蓝;然后是第二个人,他已经知道第一个人说的话,然而依旧猜不出自己的帽子。如果第三个人是红帽子的话,第二个人就能说自己是蓝帽子,因为不能同时存在两顶红帽子,所以第三个人是蓝帽子。第三个人听了这两个人的话,做了以上思考,得出自己是蓝帽子。
『玖』 一位教师让三位聪明的学生看了一下准备好的五顶帽子:三顶白,两顶黑然后让他们闭上眼睛,给每人带上一顶
他们三人头上各带的都是白帽子
推理过程:(推理的关键:踌躇了一会儿,觉得为难)
三名学生分别标识为甲、乙、丙。甲学生这样推理:如果我头上戴的是黑帽子,那么乙看到我头上的黑帽子,他也假设自己头上是黑帽子,如果我们两人假设都正确,那么丙看到的是两顶黑帽子。这时丙应该立即说出自己头上是白帽子。但是丙犹豫了,这说明丙看到的不是两顶黑帽子。在这种情况下,如果我头上是黑帽子的假设成立,那么乙看到丙的犹豫,便知道自己头上不是黑帽子。所以乙应该立即说出自己自己头上是白帽子。但乙也犹豫了。这说明我头上不是黑帽子,应该是白帽子。
其余两人推理同甲。
『拾』 帽子的颜色问题讲的是什么呢
(1)有三顶红帽子,两顶白帽子,现将其中三顶给排成一列纵队的三人每人戴上一顶,每人都只能看到自己前面的人的帽子,而看不到自己和自己后面人的帽子。从后往前问三人同样的问题:“你戴的帽子是什么颜色?”最后面的人回答说:“不知道。”接着中间的人也说:“不知道。”然而最后回答问题的站在最前面的人却做出了肯定的正确回答。问这个人戴的帽子是什么颜色?回答这个问题需要做正确的逻辑分析。
在提问后,最后面的人回答“不知道”,从中可断定以下事实:
前面两个人中至少有一个戴红色帽子。不然的话,如果前面两人均戴白帽子,而白帽子只有两顶,最后面的人就会知道自己戴红帽子,不会说不知道。这个事实中间的人也可得知,在此基础上他又回答“不知道”,那么一定是最前面的人戴着红帽子。不然的话,最前面的人若戴白帽子,因他与中间的人两人中至少有一个戴红帽子,那中间的人就一定戴红帽子了,中间的人也不会说不知道。于是,最前面的人戴红色帽子是正确结论。
在这个帽子的颜色问题中,戴着帽子回答问题的三个人应是聪明人,都能正确地进行逻辑推理,并作出正确的判断。如果有一个智力有问题,或胡乱猜测随便回答,那么整个事情就无法正确解释了。
此问题是一个传统的逻辑推理问题,人们经常利用这样的问题考察智力,既要看会不会推理,又要看整个推理过程是不是简明,还要看推理用的时间。在一个好的问题面前,可以充分显示人的思维能力。
中国著名数学家华罗庚对上述帽子的颜色问题作了改造,提出下面的问题:
(2)一位老师让三位聪明的学生看了一下事先准备好的五顶帽子:三顶白色的,两顶黑色的。然后让他们闭上眼睛,他替每个学生戴上一顶帽子,并把其余两顶藏起来,让学生睁开眼睛后各自说出自己戴的帽子的颜色。三人睁眼互相看了一下,踌躇了一会儿,觉得为难,继而异口同声地说自己头上戴的是白帽子。问他们是怎样推演出来的?先看戴帽情况,有两黑一白、两白一黑、三白共三种情况。
若第一种情况,戴白帽子的学生一看便能说出自己戴的帽子颜色,而实际上三人睁眼互相看了一下,踌躇了一会儿,没一人马上说出,这表明这种情况是不符合现实。
这样三人都明白其中至多只有一人戴黑帽子,如果有一人戴黑帽子,另外两人必会立刻说出自己戴着白色帽子,而不会踌躇且觉得为难。三人均为难说明谁也没有看见有人戴黑色帽子,那么三人戴的都是白色帽子。于是三位聪明学生便异口同声说出自己戴的帽子的颜色。
这个问题初看似乎感到条件不足,然而细一琢磨,“踌躇了一会儿,觉得为难,继后异口同声地说”里面涵义丰富,奥妙无穷。建立在这条件上,便可展开如上推理,层层深入,环环紧扣。
华罗庚推出这一改编的问题,让人深深体会到了数学大师的内在功力,其中表现出高超的思维技巧。
如果把人数增多,还可提出类似的问题:
(3)四个爱动脑筋的小朋友接受老师的智力测验,看谁能最快最准确地回答问题。老师让他们都闭上眼睛,给他们每人戴上一顶帽子,或者是白的,或者是蓝的。然后让他们睁开眼睛,告诉他们:“谁看到的白帽比蓝帽多就马上举手。然后各位说出自己戴的帽子颜色。”大伙互相看了一下(每个人都看不见自己戴的帽子,但能看清别人戴的帽子),谁也没举手,过了一会儿,也没有人说出自己戴的帽子颜色,其中一个叫小光的学生见大家都不说话,就猜出了自己头顶上的帽子颜色。问小光戴的是什么样的帽子。
再来分情况考虑。
如果恰有两个人戴白色帽子,另外两人都会看到两顶白帽,一顶蓝帽。他俩会同时举起手,而实际上无人举手,这表明在四个学生中最多只有一人戴白帽子。
如果只有一个学生戴白帽子,另外三人都会看到一顶白帽,两顶蓝帽,谁也不会举手。戴白帽子的人看到的是三顶蓝帽,也不会举手。三个戴蓝帽的人会想到:“我已看到一顶白帽子,如果我戴的也是白帽,就会有两人举手,而事实上没有举手,说明我戴的是蓝帽。”
可是,仍然没有人举手,这就说明一顶白帽也没有,四人戴的都是蓝帽子。