1. 逻辑推理题,帽子问题
A是色盲,其所戴帽子为绿色。分析如下:
(1)B和C是等同的,由于不可能存在两个色盲,故A为色盲;
(2)由于第2次询问时,B和C都知道了,故所取出的帽子为两红一绿;
(3)假设A所戴帽子为红色,则第1次询问时,B或C应该有1人知道,这与实际情况“第1次询问时,A、B和C都不知道”矛盾,故A所戴帽子为绿色。
2. 数学问题帽子问题
最后的人可以看到的情况为:
两红 或一红一白
这样他是不知道自己的颜色
如果是两白 自己就知道了
中间的人知道
最后人看到两种可能的情况
但是当他看到前的是红的时候
就不知道自己的红还是白了
当看到白的时候就知道自己是红的了
故 最前面的是 红的
3. 帽子问题,数学逻辑题
带黑帽子的看见别人都是白帽子以为自己也是白帽子!如果黑帽子是两顶的话!甲黑帽看到乙黑帽!以为只有一顶!所以也不会说!相同三个四个同样也是
4. 三个白帽,二个黑帽的问题,有点不一样。
我的头上要么就是白的要么就是黑的,黑的几率有66%白的几率有33%。
不知道什么反应我可以问吧你没说不能问啊。
我先问一号觉得他头上是什么帽子。
再问二号的帽子。
已经藏起来两顶帽子,我看见了两顶白帽子。那么藏起来的要么就是两黑的要么就是一黑一白。
一号二号肯定是根据最大的几率来选择正确答案,如果一号跟二号都说可能是白帽子那么我头上戴的肯定是黑帽子,因为他们看到的都是一黑一白,白的几率要大。
如果一号二号说可能是黑帽子那么我头上戴的肯定是白帽子。
这个问题不可能单纯的去猜测,如果非要去猜测我肯定只能选几率大的黑帽子。
这应该是个另类活泛点的辩证题。
5. 我国一位数学家的问题:一共有5个帽子,其中有3个帽子是黑的,2个是白的。把3个黑帽子分别戴在3个人
这道题的关键点在于犹豫了很久这点。现场如果是,两白一黑的话,很快就有一个人能说出自己帽子定位颜色。排除此可能后,还剩全黑和一白两黑两种情况。一白两黑的情况,假设有人看到了一黑一白,那肯定能说出自己是黑色;但没有人说出自己是黑色,说明所有人看到的都是黑色,才会犹豫无法做出判断。最终只能一种情况全黑。
6. 戴帽子问题~~推理题
首先考虑简单情况:如果B看到A和C都是黑帽子,自然就知道自己是白色的了;C同理。二人都不知道自己帽子的颜色,因此:AC至少有一顶白帽子,AB至少有一顶白帽子 (1)根据推论(1)可以知道:如果A是黑帽子,则BC都必然是白帽子(2)※下面假设B先承认自己不知道,即C在知道B不知道的情况下依然不知道自己帽子的颜色。如果(2)成立,那么B不知道自己的颜色,而A是黑色,如果C也是黑色,那么B自然就知道自己是白色了。因此C必然不是黑色,所以C是白色,这和C不知道自己的颜色矛盾。因此A是白帽子
7. 兄弟三人戴帽子问题。救救他们三人。智力题。
说的最难的意思就是哪样戴法让他们最难猜中。
先解决前面一问:
一共有多少种戴法:
全红1种,2红1黑3种,1红2黑3种。共7种不同的戴法。
第2问:
哪一种最难。
当然是给老三戴红帽最难了。
我们一步步分析,从最简单的开始看起。
首先肯定是老大猜,因为他能看到老二老三的帽子颜色,如果老二老三帽子都是黑的,那么老大马上就能判断自己帽子是红的,这就是1红2黑的3种中的一种情况。共1种,这种情况最简单。
但是万一老大猜不出来呢?那就是老二老三帽子要么1黑1红, 要么2红,这个时候,该让老二猜了,如果老二看到老三的帽子是黑的,他马上就可以猜到自己帽子是红的。(因为老大不能猜出来,则肯定老二老三的帽子1红1黑或2红)如果让老二猜,并且猜出来,这是较难的戴帽方法,包括2红1黑3种中的一种,1红2黑3种中的一种。共2种,这2种较难。
但是万一老二也猜不出来呢?那就是老三的帽子是红的,老二不能猜出来,老三要经过老大老二都不能猜出来分析来判断自己的帽子是红的。包括3红情况下的1种,2红1黑3种情况下中的2种,1红2黑3种情况中的一种,共4种。这4种是最难的。
其实LZ的这个问题是下面的题目的变种:
聪明兄弟三人站成一路纵队(老三选择站在最前面,他后面是老二。老大站在了最后面),并分别被蒙住了眼睛。县太爷说两顶黑帽子和三顶红帽子,接着就分别给他们头上各戴一顶帽子,揭开蒙纱。此时老大只可以看到老二和老三头上的帽子,老二只可以看到老三头上的帽子,老三看不到帽子。县大爷先问老大他自己戴了什么颜色的帽子,老大看了看,说不知道,然后又问老二他自己戴了什么颜色的帽子,老二想了想,看了看,也说不知道,那么请问,老三戴帽子的颜色,该如何思考?
8. 逻辑问题之三个数字帽子
A:72
B:72
C:144
9. 三个人戴五帽 的逻辑推理
三个人,站成一排.有五个帽子,三个蓝色,两个红色,每人带一个,各自不准看自己的颜色.第一个人站在排的最后,他可以看见前二个人的帽子的颜色,第二个人可以看见前一个人的帽子的颜色.然后问第一个人带的什么颜色的帽子,他说不知道,然后又问第二个人带的什么颜色的帽子,同样说不知道,又问第三个人带的是什么颜色的帽子,他说我知道.问第三个人带的是什么色帽子?
是这个题吗?
第一个人纵观全局,然而他不知道自己的帽子颜色,所以第一个人看到的帽子不会是两个红色的,只会是一红一蓝或者两蓝;然后是第二个人,他已经知道第一个人说的话,然而依旧猜不出自己的帽子。如果第三个人是红帽子的话,第二个人就能说自己是蓝帽子,因为不能同时存在两顶红帽子,所以第三个人是蓝帽子。第三个人听了这两个人的话,做了以上思考,得出自己是蓝帽子。
10. 三顶黑帽子,两顶白帽的推理问题
A=白,B=黑,C=黑。
理由:
1.可以确定三人头上不可能有两顶白帽子.否则不是另一人看见有两顶白帽子,就可以确定自己不是白帽子,而是黑帽子了;
下面在不能有两顶白帽子的前提下进行推导:
2.C不可能是白帽子.假如C为白帽子,因为C的颜色是A和B都可以看到的,B听到A说自己无法判断自己帽子颜色后,B就可以判断出自己不是白色了,而是黑色了,这与题意不符。所以C是黑帽子;
下面在C是黑帽子且没有两顶白帽子的前提下推导:
3.C是黑帽子的情况下,可能是(1)A白B黑,(2)A黑B白,或(3)A黑B黑三种情况,这三种情况中,B黑的时候A有两种情况,B白的时候A只有一种情况,即A黑B白c黑。这样A看到的是一黑一白,无法判断自己帽子的颜色,B看到两顶黑色,也无法判断自己帽子的颜色。C看到的是一黑一白,C想:“如果自己是白色的,A就能看到两顶白色的(B和C帽子的颜色),A就可以判断自己是黑色的了。现在A无法判断,所以自己一定是黑色。”也就是C在听到A的话之后就能判断自己帽子颜色了,而不要等到B说话。这与题中所述不符,所以B也不可能是白的,即B是黑的。
下面在B黑C黑的情况下讨论:
4.剩下两种情况,A白B黑C黑或A黑B黑C黑。从C的角度考虑,C想:“B看到A是黑色的,不管自己是黑是白B都无法判断他自己帽子颜色,所以我也不能从B的话中判断出自己帽子颜色。同时我看到两顶黑色,也无法判断自己帽子颜色,所以我总是判断不出自己帽子的颜色。”这与题中情况不符,所以不可能都是黑色,所以只剩一种情况:A白B黑C黑。
从上可以判断出唯一的可能是A白B黑C黑。
5.下面再来验证一下是不是符合题意,即论证是否是得出题中事实的充分条件:
在A白B黑C黑的情况下,A看到的是两顶黑色,所以无法判断自己帽子的颜色;B看到一黑一白,也无法判断自己帽子的颜色。C看到一白一黑,本来也无法判断自己帽子颜色。但是听了B的话后,C想:“假如自己是白色,B再看到A的白色,那么B看到两顶白色,那B就可以判断自己肯定是黑色了。现在B不能判断,那么自己一定是白色。”这样C就判断出自己帽子的颜色了,与题中所述相符.
所以此题的答案是:A=白,B=黑,C=黑。
推理完毕!