概率为(1/m)^n
㈡ 帽子问题,数学逻辑题
带黑帽子的看见别人都是白帽子以为自己也是白帽子!如果黑帽子是两顶的话!甲黑帽看到乙黑帽!以为只有一顶!所以也不会说!相同三个四个同样也是
㈢ 黑白帽子一堵墙逻辑题
答对的是C
D看见的一定是一黑一白;
这样C,看到B帽子的颜色,就知道自己的颜色跟B的相反
㈣ 一道数学题(如下问题补充)
题3:
知道自己帽子上的数能否被A整除的人 = 知道自己的帽子的数不能被A整除
也就是说9个两位数只有5个能被A整除
所以5A<=99,6A>100
所以A只能在17~19中取数
同理,知道自己帽子上的数能否被24整除的人 = 知道自己的帽子的数不能被24整除
24的倍数有24,48,72,96,
按理应该有5人举手才对,那么说明至少有一个人肯定知道自己能被24整除,同时也说明了A只能是18,因为24的倍数里72能同时被18整除。
所以:
其他8个人帽子上的两位数分别是:18,36,54,(72),90,24,48,96
所以总和是438
㈤ 求一道智力题
这道题本来是这样的一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
答:有三个人戴黑帽。假设有N个人戴黑,当N=1时,戴黑人看见别人都为白则能肯
定自己为黑。于是第一次关灯就应该有声。可以断定N>1。对于每个戴黑的人来说,他能看见N-1顶黑帽 ,并由此假定自己为 白。但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了。所以第N次关灯就有N个人打自己。
虽然有所变化,但是情况还是相同的。解决这样的问题,关键就是要把自己放在题目里面想象。
㈥ 逻辑推理题,帽子问题
A是色盲,其所戴帽子为绿色。分析如下:
(1)B和C是等同的,由于不可能存在两个色盲,故A为色盲;
(2)由于第2次询问时,B和C都知道了,故所取出的帽子为两红一绿;
(3)假设A所戴帽子为红色,则第1次询问时,B或C应该有1人知道,这与实际情况“第1次询问时,A、B和C都不知道”矛盾,故A所戴帽子为绿色。
㈦ 智力题 猜帽子
答案:
1、只有前面两个人的帽子是:一白一黑或全黑,第三个人才不知道自己戴的是什么。
2、前面两个人的帽子是:一白一黑,如果第一个是白的,第二个人就会知道自己是黑的。
3、后两个人不知道自己什么帽子,第一个人就知道自己是黑的帽子。
㈧ 数学帽子题
设男x人,女y人,则
x-1=y
y-1=x/2
把y=x-1代到第二个式子中得到x-1-1=x/2,则x=4
那么y=3
解得x=4,y=3
则总人数为7人
㈨ 戴帽子问题~~推理题
首先考虑简单情况:如果B看到A和C都是黑帽子,自然就知道自己是白色的了;C同理。二人都不知道自己帽子的颜色,因此:AC至少有一顶白帽子,AB至少有一顶白帽子 (1)根据推论(1)可以知道:如果A是黑帽子,则BC都必然是白帽子(2)※下面假设B先承认自己不知道,即C在知道B不知道的情况下依然不知道自己帽子的颜色。如果(2)成立,那么B不知道自己的颜色,而A是黑色,如果C也是黑色,那么B自然就知道自己是白色了。因此C必然不是黑色,所以C是白色,这和C不知道自己的颜色矛盾。因此A是白帽子