A. 经典逻辑题:黑白帽子
若第三个人知道他戴的帽子,那么就只有一种可能性:前面两个人戴的是白帽子,他是黑帽子。这样第二个人也就知道他戴了白的,第三个人也就知道了。
但是如果第一个人不知道,那么前面两个人中至少有一人是黑帽子,此时如果第二个人知道,那就只有一种可能:第一个人是白帽子,他是黑帽子。
实际上第二个人不知道他自己是什么帽子,那么他肯定是看到了前面的人戴的是黑帽子。(因为他和第一个人中肯定有一个人戴的是黑帽子,若第一个人是白色的,那他肯定是黑色的,但是第一个人如果是黑色的,那他就不知道他是什么颜色的了)
这样听到后面两个人的回答都是:不知道的时候,第一个人就能猜出他戴的是黑帽子了
三人从后到前表示为:3,2,1
若3知, 则:3(黑),2(白),1(白)
若3不知,则:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,则只有一种情况:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面两种情况:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不论以上两种中的那种情况第一个人都可以得出结论:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一个可能性而已。
B. 白红帽子和黑帽子逻辑推理
C戴的是红颜色的帽子.
C可以看到A、B帽子的颜色,首先可以肯定,AB两人不可能同时戴着白帽子,否则C就会知道自己戴的是红帽子;其次,如果C戴的是白帽子,对A来说,同上理,他看定看到B戴的是红帽子,才会不知道自己戴的是什么颜色的帽子;最后,也是最关键的,对B来说,以A的逻辑推理,如果他看到C戴的是白帽子,而A又不知道自己帽子的颜色,则B就能肯定自己戴的是红帽子,因此与题目中B不知道自己帽子的颜色相驳,所以,C戴的是红颜色的帽子.
C. 同事出了个推理题,觉得蛮有意思,分享给大家:有5顶帽子,3黑2白。三个聪明人戴
1.首先考虑,如果两个人都戴黑帽子,而自己戴白帽子机率最大,首先想到的是自己戴白帽子.如果他喊出白帽子,就等于告诉了对方答案.所以三人都考虑了很久,等待对方作答,这只能说明他们全戴黑帽子.. 2.同上,乙和丙报出了自己可能是白帽子,告知了甲肯定了答案..
D. 题目:有三顶红帽子和两顶白帽子。将其中的三顶帽子分别戴在 A、B、C三人头上。这三人每人都只能看见
假设C戴白色,A不知道自己的颜色,B可以判断自己带红色,故C戴红色。如此而已
E. 三顶黑帽子,两顶白帽的推理问题
A=白,B=黑,C=黑。
理由:
1.可以确定三人头上不可能有两顶白帽子.否则不是另一人看见有两顶白帽子,就可以确定自己不是白帽子,而是黑帽子了;
下面在不能有两顶白帽子的前提下进行推导:
2.C不可能是白帽子.假如C为白帽子,因为C的颜色是A和B都可以看到的,B听到A说自己无法判断自己帽子颜色后,B就可以判断出自己不是白色了,而是黑色了,这与题意不符。所以C是黑帽子;
下面在C是黑帽子且没有两顶白帽子的前提下推导:
3.C是黑帽子的情况下,可能是(1)A白B黑,(2)A黑B白,或(3)A黑B黑三种情况,这三种情况中,B黑的时候A有两种情况,B白的时候A只有一种情况,即A黑B白c黑。这样A看到的是一黑一白,无法判断自己帽子的颜色,B看到两顶黑色,也无法判断自己帽子的颜色。C看到的是一黑一白,C想:“如果自己是白色的,A就能看到两顶白色的(B和C帽子的颜色),A就可以判断自己是黑色的了。现在A无法判断,所以自己一定是黑色。”也就是C在听到A的话之后就能判断自己帽子颜色了,而不要等到B说话。这与题中所述不符,所以B也不可能是白的,即B是黑的。
下面在B黑C黑的情况下讨论:
4.剩下两种情况,A白B黑C黑或A黑B黑C黑。从C的角度考虑,C想:“B看到A是黑色的,不管自己是黑是白B都无法判断他自己帽子颜色,所以我也不能从B的话中判断出自己帽子颜色。同时我看到两顶黑色,也无法判断自己帽子颜色,所以我总是判断不出自己帽子的颜色。”这与题中情况不符,所以不可能都是黑色,所以只剩一种情况:A白B黑C黑。
从上可以判断出唯一的可能是A白B黑C黑。
5.下面再来验证一下是不是符合题意,即论证是否是得出题中事实的充分条件:
在A白B黑C黑的情况下,A看到的是两顶黑色,所以无法判断自己帽子的颜色;B看到一黑一白,也无法判断自己帽子的颜色。C看到一白一黑,本来也无法判断自己帽子颜色。但是听了B的话后,C想:“假如自己是白色,B再看到A的白色,那么B看到两顶白色,那B就可以判断自己肯定是黑色了。现在B不能判断,那么自己一定是白色。”这样C就判断出自己帽子的颜色了,与题中所述相符.
所以此题的答案是:A=白,B=黑,C=黑。
推理完毕!
F. 逻辑推理——猜帽问题
答案红帽!
推理:A回答不知道,表示A看到的帽子肯定不是两顶白帽,也就表示B和C当中至少有一人带的是红帽。
B想一想才回答不知道,表示B看到C的头上带的肯定不是白帽,因为“B和C至少有一人带的是白帽”那也就表示,要是C带红帽的话,那么B就可定是红帽了。
所以C是根据这一点才判断出自己头上带的是红帽!
G. 华罗庚退步解题方法 ,就是三个学生戴帽子,三顶白帽子,两顶黑帽子
排除法:
这道题的条件有两个
1,犹豫前一会儿
2,犹豫后一会儿
答案只有三个可能
1三白,
2一白两黑
3两白一黑
通过犹豫前一会儿排除2,因为肯定有个白的先说,不会犹豫
通过犹豫后一会儿排除3,如果有个黑的,那么两个白的就会根据不会有两个黑的说出自己是白的,
总而言之,对于神童来说犹豫这么久意味着无法确定,神童之间明白大家都无法确定,而三白就是唯一无法确定的情况.也就是唯一的情况.
H. 来自微软的试题 有3顶黑帽子,2顶白帽子。
最后一个人不知道,说明前面两个人一定有个人是黑帽子(如果两白,自己一定是黑的),
对于第二个人来说,既然最后一个人不知道,那么他与前面一个人有三种情况(黑白,黑黑,白黑),如果前面一个人是白的,那么自己就是黑的,也就知道了,而他不知道,所以第一个人一定是黑的,望采纳
I. 推理题:有1位老师,准备3顶白帽子,2顶黑帽子,让3个学生看到,然后叫他们闭上眼睛,分别给他们戴上
甲可以。丙推断不出自己帽子的颜色则甲乙两人的帽子可能是2白或1白1黑,乙也推断不出自己帽子的颜色则甲的帽子颜色只能为白色,故甲可以推断出自己帽子的颜色
J. 耿老师有三顶黑帽子和两顶白帽子,她找来三个好学生,每人戴上一顶帽子,每个人能看到
A想如果自己戴的是白帽子,B和C会比较容易猜出来他们头上帽子的颜色。比如说,B会想,如果自己头上戴的是白帽,那么C就会看到两顶白帽,他就会站起来说自己获得赦免了,而不是继续不说话,因此自己戴的肯定是黑帽。A看到B和C都没有做出这种推理,于是可以断定自己戴的是黑帽。