答:有三个人戴黑帽。假设有N个人戴黑,当N=1时,戴黑人看见别人都为白则能肯
定自己为黑。于是第一次关灯就应该有声。可以断定N>1。对于每个戴黑的人来说,他能看见N-1顶黑帽 ,并由此假定自己为 白。但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了。所以第N次关灯就有N个人打自己。
㈡ 屋里有五顶帽子,三顶黑的,两顶白的,进去三个人带帽子,带好后藏起来两顶,第一个人说不知道自己的帽子
分析与解答:
(1)退一步思考,从原来的问题里减少一个人和一顶帽子。先不考虑三个人两顶黑帽子,而只考虑两个人一顶黑帽子。这一简化,思考起来就容易多了,只有一顶黑帽子,如果我戴的是黑帽子,对方便立刻会说,他戴的是白帽子,现在对方没有立刻回答,而在踌躇,可见我戴的不是黑帽子而是白帽子。
(2)进一步推想到三个人两顶黑帽子。如果我头上戴的是黑帽子,就变成前面已讨论的“两个人一顶黑帽子”的问题了。这时他俩可立刻回答而不会踌躇,说明我头上戴的不是黑帽子,而是白帽子。
㈢ 华罗庚退步解题方法 ,就是三个学生戴帽子,三顶白帽子,两顶黑帽子
排除法:
这道题的条件有两个
1,犹豫前一会儿
2,犹豫后一会儿
答案只有三个可能
1三白,
2一白两黑
3两白一黑
通过犹豫前一会儿排除2,因为肯定有个白的先说,不会犹豫
通过犹豫后一会儿排除3,如果有个黑的,那么两个白的就会根据不会有两个黑的说出自己是白的,
总而言之,对于神童来说犹豫这么久意味着无法确定,神童之间明白大家都无法确定,而三白就是唯一无法确定的情况.也就是唯一的情况.
㈣ 来自微软的试题 有3顶黑帽子,2顶白帽子。
最后一个人不知道,说明前面两个人一定有个人是黑帽子(如果两白,自己一定是黑的),
对于第二个人来说,既然最后一个人不知道,那么他与前面一个人有三种情况(黑白,黑黑,白黑),如果前面一个人是白的,那么自己就是黑的,也就知道了,而他不知道,所以第一个人一定是黑的,望采纳
㈤ 逻辑推理:有5顶帽子,2顶红的,3顶黑的。拿其中3顶给3个人戴上(不让他们看到自己戴的帽子颜色),
假设甲乙丙三个人,如果是甲猜出的情况,分析如下:
情况1、甲乙都看到丙戴红帽子,如果乙是红帽子,甲就会很快猜出自己是黑帽子。
㈥ abc三个人带着三顶帽子,帽子不是白的就是黑的,但不会都是白的。
因为a,b可以看其他两人的帽子,帽子不会全部一样所以看到的另外两人的帽子必然是一黑一白的,如果c是黑的,则在a看来b是白的,b看c是黑的,则看a是白的,这样一看,那么a,b都是白的,不会都是白的,所以c是黑的,另一种情况,如果c是白的,则在a看来b是黑的,b看c是白的,则看a是黑的,这样一看,那么a,b都是黑的,则c无法判断,所以应该是前一种情况,所以c的帽子是黑的.....(你想想吧,我不确定啊,毕竟很急着干别的事....真的抱歉啊)
㈦ 有五顶帽子,其中有三顶白的,两顶黑的。叫三个人来,把他们的眼睛蒙住,把其中三顶给他们带好,在把其他
a看到两顶白色帽子,第一判断无法做出,因此他会想其他人的反应,因为他看到b和c都是白色,所以他假设任何一人的反应均可,这里取b。a假设自己头上是黑色,则b看到的是黑色和白色,这时b会看c的反应,如果b自己头上是黑色则c会第一时间喊出白色,c没有喊,则b会在第二时间喊出白色。由于a知道b和c相同,因此,如果b和c第二时间同时喊出白色,则a知道自己是黑色。事实上并没有两个人先喊白色,因此结论就是自己也是白色,每个人看到的都是两顶白色帽子,所以在第三时间上三个人同时喊出白色。
㈧ 有3顶黑帽子,2顶白帽子。让三个人从前到后站成一排,给他们每个人头上戴一顶帽子。每个人都看不见自己戴
如果前面戴的都是白帽子,则最后一人就知道自己戴的是黑帽子。若最后一人回答不知道,则前面两人戴的都是黑帽子或一人白帽子一人黑帽子;此时,若最前面的人戴的是白帽子,则中间的人就知道自己戴的是黑帽子;若中间的人回答不知道,则最前面的人戴的是黑帽子。
分析与综合
分析:分析是把事物分解为各个部分、侧面、属性,分别加以研究。是认识事物整体的必要阶段。
综合:综合是把事物各个部分、侧面、属性按内在联系有机地统一为整体,以掌握事物的本质和规律。
分析与综合是互相渗透和转化的,在分析基础上综合,在综合指导下分析。分析与综合,循环往复,推动认识的深化和发展。
事例:在光的研究中,人们分析了光的直线传播、反射、折射,认为光是微粒,人们又分析研究光的干涉、衍射现象和其他一些微粒说不能解释的现象,认为光是波。当人们测出了各种光的波长,提出了光的电磁理论,似乎光就是一种波,一种电磁波。
但是,光电效应的发现又是波动说无法解释的,又提出了光子说。当人们把这些方面综合起来以后,一个新的认识产生了:光具有波粒二象性。
㈨ 3个人,5顶帽子(2顶黑色3顶白色的帽子) 3人站成纵队,每个人戴一顶帽子,(颜色未
首先假设这3个人是A B C
A看到了2个黑帽子,他假设自己带的是白帽子(以下蓝色部分是A的心理活动,紫色部分是A假想中的B的心理活动)--
那么B看到的应该是1黑1白
这时候如果B的心理活动应该是--假设自己戴的也是白帽子,C应该很容易的知道自己带的是黑帽子;而现在C并没有马上回答,则说明了B他自己带的是黑帽子(此假设同样适用于C).
而现在B C都没有马上判断出自己带的是黑帽子,所以A自己带的不是白帽子.
㈩ 有3个人,5顶帽子(2顶黑色3顶白色的帽子)
首先假设这3个人是A
B
C
A看到了2个黑帽子,他假设自己带的是白帽子(以下蓝色部分是A的心理活动,紫色部分是A假想中的B的心理活动)--
那么B看到的应该是1黑1白
这时候如果B的心理活动应该是--假设自己戴的也是白帽子,C应该很容易的知道自己带的是黑帽子;而现在C并没有马上回答,则说明了B他自己带的是黑帽子(此假设同样适用于C)。
而现在B
C都没有马上判断出自己带的是黑帽子,所以A自己带的不是白帽子。