D能看見BC的帽子,C能看見B的帽子。因為按同一方向坐,如果D先說勒自己帽子的顏色,就證明BC帽子的顏色是一樣。 如果沒說的話,就知道C和B的帽子顏色不一樣,而B的帽子是黃色,顯然C的帽子是紅色。當C說出答案後B自然就知道自己的帽子的顏色,這樣就解開了。
⑵ 經典智力題——帽子顏色問題
若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)
若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。
⑶ 智力題 猜帽子
答案:
1、只有前面兩個人的帽子是:一白一黑或全黑,第三個人才不知道自己戴的是什麼。
2、前面兩個人的帽子是:一白一黑,如果第一個是白的,第二個人就會知道自己是黑的。
3、後兩個人不知道自己什麼帽子,第一個人就知道自己是黑的帽子。
⑷ 智力題:智辨帽色
如果丙看到了兩頂黑帽,則他馬上可以肯定他自己頭上戴的必是紅帽,因為黑帽只有兩頂.可是由於丙判斷不了,從而可以推知,他看到的情況必是兩頂紅帽或一紅一黑.若乙看到的是一頂黑帽,則在上述推理的基礎上即可判定他所戴的乃是紅帽,可是他說他也不知道頭上帽子的顏色;由此可以判定乙所看到的,甲頭上所戴的乃是紅帽.於是,甲可順理成章地(即使他是色盲患者,甚至真正的瞎子也沒有關系)判定:他頭上戴的必是一頂紅帽子.
⑸ 猜帽子顏色的智力問題
放下手的女人是這樣推理的:
她想:「如果我的帽子是白色的,另外的兩個女人會怎麼想呢?她們會想:『已經有一個女人的帽子是白的了,如果我的帽子也是白的,那麼就不可能3個人都舉起手了,所以我的帽子是紅的',所以就有人能立即判斷出來並放下手,但是沒有人放下,說明我的帽子不是白的,而是紅的!」 於是就推理出來了!
這是道邏輯推理學的典型例題,是利用換位思考的方法推理出來的!樓上兩個說的什麼啊,這是邏輯推理題,不是鬧經急轉彎……而且還抄襲……
⑹ 經典邏輯題:黑白帽子
若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)
若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。
⑺ 帽子顏色(邏輯推理題)
如果自己戴的也是紅色帽子,一共就兩頂紅色帽子,第三個人就能猜到自己就是黑色帽子了,但是那個人沒有反應說明沒有猜出來,說明自己不是紅色帽子,那麼就是黑色帽子了!
⑻ 確認帽子顏色的智力題怎麼做 求高手
一群人玩一個智力游戲。每個人頭上有一頂帽子(分綠藍兩種顏色,藍色有若干頂,綠色至少有一頂)大家都可以看到他人的帽子,但卻看不到自己的,主持人讓大家站在一起,說「如果你們肯定自己的頭上不是藍帽子,就拍手!(沒人拍手)他又問了一次,(還是沒人拍),他接著又問,就響起了拍手聲。請問有幾個人帶了綠帽子。
呵呵,自以為自己戴綠帽子了,其實只有主持人一個人戴綠帽子。
⑼ 奧數問題 一百個人,每人戴一頂帽子,帽子有黑白兩色每人可看前面所有人的帽子顏色,但不能看自己的和後面
必能活下來的有99人!!!要犧牲的就是最後一人,活下來的可能性為1/2。
第一百個人先數出前面九十九人共戴了奇數還是偶數頂黑帽子,奇數就喊「黑色」,偶數就喊「白色」。第九十九人再數出前面的人戴了奇數還是偶數頂黑帽子,如和後面第一百個人抱的答案一樣,就說明自己戴了白帽子(否則黑帽子奇偶就改變了),就喊「白色」,同時也告訴了前面的人黑帽子是偶數頂。反之則喊「黑色」,同時也告訴了前面的人黑帽子是奇數頂。前面每個人都用這個方法判斷自己的帽子的顏色,並傳達帽子的奇偶,就能使前99人都活下來。
⑽ 帽子顏色推理
黃色的
我們從最後一個人分析
如果最後一個看到前面9個都帶藍色,那麼就知道自己一定是黃色。
看到有一個人帶黃色帽子,他就無法知道自己的帽子是什麼顏色。
倒數第二人如果前面得8人都是藍色,那麼自己一定是黃色,因為最後一人不知道他帶什麼顏色,那麼自己一定是黃色。
這樣每個人都會同樣的分析。
但只要前面人中有一人帶黃色帽子,他本人就分析不出自己帶什麼顏色的帽子,所以第一個人雖然看不到任何人的帽子顏色,也可以推斷出 自己帶的是黃色帽子。