『壹』 戴帽子问题~~推理题
首先考虑简单情况:如果B看到A和C都是黑帽子,自然就知道自己是白色的了;C同理。二人都不知道自己帽子的颜色,因此:AC至少有一顶白帽子,AB至少有一顶白帽子 (1)根据推论(1)可以知道:如果A是黑帽子,则BC都必然是白帽子(2)※下面假设B先承认自己不知道,即C在知道B不知道的情况下依然不知道自己帽子的颜色。如果(2)成立,那么B不知道自己的颜色,而A是黑色,如果C也是黑色,那么B自然就知道自己是白色了。因此C必然不是黑色,所以C是白色,这和C不知道自己的颜色矛盾。因此A是白帽子
『贰』 推理游戏,答案是前两个人戴红帽子,后一个人戴黑帽子,问题看下面
一共有4种情况如下
3个黑帽子:不符合至少1个红帽子
2个黑帽子1个红帽子:红帽子视野中有2黑,于是他会立马想到规则至少1个红帽子,从而反应过来自己是红帽子,此种情况红帽子先宣布自己帽子颜色,2个黑帽子随后宣布。
1个黑帽子2个红帽子:红帽子视野中有1红1黑,他会想:如果我是戴的黑帽子,那另一个戴红帽子的人会参考第2种情况反应过来自己是戴的红帽子,但是他没有说话,所以我戴的一定是红帽子,此种情况2个红帽子的同时宣布自己帽子颜色,黑帽子随后宣布。
3个红帽子:红帽子视野中有2红,他会想:如果我戴的是黑帽子,那两个戴红帽子的人会参考第3种情况反应过来自己戴的是红帽子,但是他没有说话,所以我戴的一定是红帽子,此种情况3人同时宣布自己帽子颜色。
综上,第2种第3种和第4种是可以宣布自己帽子颜色的,但是依据题干所说大家宣布的顺序,所以排除第2种和第4种情况,是第3种:1黑2红
『叁』 逻辑推理:有5顶帽子,2顶红的,3顶黑的。拿其中3顶给3个人戴上(不让他们看到自己戴的帽子颜色),
假设甲乙丙三个人,如果是甲猜出的情况,分析如下:
情况1、甲乙都看到丙戴红帽子,如果乙是红帽子,甲就会很快猜出自己是黑帽子。
『肆』 经典逻辑题:黑白帽子
若第三个人知道他戴的帽子,那么就只有一种可能性:前面两个人戴的是白帽子,他是黑帽子。这样第二个人也就知道他戴了白的,第三个人也就知道了。
但是如果第一个人不知道,那么前面两个人中至少有一人是黑帽子,此时如果第二个人知道,那就只有一种可能:第一个人是白帽子,他是黑帽子。
实际上第二个人不知道他自己是什么帽子,那么他肯定是看到了前面的人戴的是黑帽子。(因为他和第一个人中肯定有一个人戴的是黑帽子,若第一个人是白色的,那他肯定是黑色的,但是第一个人如果是黑色的,那他就不知道他是什么颜色的了)
这样听到后面两个人的回答都是:不知道的时候,第一个人就能猜出他戴的是黑帽子了
三人从后到前表示为:3,2,1
若3知, 则:3(黑),2(白),1(白)
若3不知,则:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,则只有一种情况:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面两种情况:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不论以上两种中的那种情况第一个人都可以得出结论:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一个可能性而已。
『伍』 帽子颜色(逻辑推理题)
如果自己戴的也是红色帽子,一共就两顶红色帽子,第三个人就能猜到自己就是黑色帽子了,但是那个人没有反应说明没有猜出来,说明自己不是红色帽子,那么就是黑色帽子了!
『陆』 逻辑推理题,帽子问题
A是色盲,其所戴帽子为绿色。分析如下:
(1)B和C是等同的,由于不可能存在两个色盲,故A为色盲;
(2)由于第2次询问时,B和C都知道了,故所取出的帽子为两红一绿;
(3)假设A所戴帽子为红色,则第1次询问时,B或C应该有1人知道,这与实际情况“第1次询问时,A、B和C都不知道”矛盾,故A所戴帽子为绿色。
『柒』 白红帽子和黑帽子逻辑推理
C戴的是红颜色的帽子.
C可以看到A、B帽子的颜色,首先可以肯定,AB两人不可能同时戴着白帽子,否则C就会知道自己戴的是红帽子;其次,如果C戴的是白帽子,对A来说,同上理,他看定看到B戴的是红帽子,才会不知道自己戴的是什么颜色的帽子;最后,也是最关键的,对B来说,以A的逻辑推理,如果他看到C戴的是白帽子,而A又不知道自己帽子的颜色,则B就能肯定自己戴的是红帽子,因此与题目中B不知道自己帽子的颜色相驳,所以,C戴的是红颜色的帽子.
『捌』 有关帽子的超难推理题!!!!!
问题如下:有100个犯人,头天晚上被通知第二天一早要带着一顶帽子(总共有100顶黑的和100顶白的,帽子是随机带的,而且不知道自己头上的帽子是什 么颜色),排成一列直线队伍,后面的人能看到前面的所有人带的帽子的颜色,前面的看不到后面的人的帽子颜色,现在警官让犯人们先讨论下,等明天排队时,警 官从最后一个人问起直到第一个,“你头上带的帽子颜色是黑还是白?”犯人只许说一个字“黑或白”,(说话时没有任何提示,都是标准的一个音,而且没有眼神 什么提示,有的只是头天晚上想出的方法)犯人说错直接杀,说对了马上放了,问讨论出一个怎样的方法使被杀的人数确定最少?
感觉最接近正确的答案:
犯人们先商量好,等排好队后,每个人都先记下在自己前面人的黑帽子的个数和白帽子的个数.
排在最后面的人的答案是关键的,他掌控着所有人的生死大权哦,这样,他前面所有的人都要记下他的答案,而且要记下他后面每一个人的答案.
比如说:
倒数第一个人,他前面99个人中白色帽子是奇数个数,那他就说自己的帽子白色,这是事先协商好的.
倒数第二个人,他就知道白是奇数,这时如果他前面看到的98个人中白色是偶数的话,那他自己一定就是白色的了,他就要说是白.
倒数第三个人,如果他前面97个人中白色偶数的话,而他后面的人是白色,所以他可以马上知道自己也是黑色了.
倒数第N个人,以此类推啦....
运气好的话,一个都不用死哦
奇偶校验法
『玖』 一道推理题(100个犯人 黑白帽子)
1、最后一个人如果看到奇数顶帽子报“黑”否则报“白”,他可能死
2、其他人记住这个值(实际是黑帽奇偶数),在此之后当再听到黑时,取反一次
3、从倒数第二人开始,就有两个信息:记住的值与看到的值,相同报“白”,不同报“黑”
99人能100%活,1人50%能活
『拾』 智力题 猜帽子
答案:
1、只有前面两个人的帽子是:一白一黑或全黑,第三个人才不知道自己戴的是什么。
2、前面两个人的帽子是:一白一黑,如果第一个是白的,第二个人就会知道自己是黑的。
3、后两个人不知道自己什么帽子,第一个人就知道自己是黑的帽子。