導航:首頁 > 帽子知識 > 有3頂紅帽子4頂黑帽子5頂白帽子

有3頂紅帽子4頂黑帽子5頂白帽子

發布時間:2025-07-10 18:01:14

『壹』 10人站成一列,一人一個帽子,兩種顏色共10個,每人只能看到前面人的帽子,從最後一人依次往前問所戴帽子的

一共3紅4黑5白,第十個人不知道的話,可推出前9個人的所有可能情況:
紅 黑 白
3 3 3
3 2 4
3 1 5
2 3 4
2 2 5
1 3 5
如果第九個人不知道的話,可推出前8個人的所有可能情況:
紅 黑 白
1 2 5
1 3 4
2 1 5
2 2 4
2 3 3
3 1 4
3 2 3
由此類推可知,當推倒第六個人時,會發現他已經肯定知道他自己戴的是什麼顏色的帽子了.

「有3頂黑帽子,2頂白帽子。讓三個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。(所以最後一個人可以看見前面兩個人頭上帽子的顏色,中間那個人看得見前面那個人的帽子顏色但看不見在他後面那個人的帽子顏色,而最前面那個人誰的帽子都看不見。現在從最後那個人開始,問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。事實上他們三個戴的都是黑帽子,那麼最前面那個人一定會知道自己戴的是黑帽子。為什麼?」
答案是,最前面的那個人聽見後面兩個人都說了「不知道」,他假設自己戴的是白帽子,於是中間那個人就看見他戴的白帽子。那麼中間那個人會作如下推理:「假設我戴了白帽子,那麼最後那個人就會看見前面兩頂白帽子,但總共只有兩頂白帽子,他就應該明白他自己戴的是黑帽子,現在他說不知道,就說明我戴了白帽子這個假定是錯的,所以我戴了黑帽子。」問題是中間那人也說不知道,所以最前面那個人知道自己戴白帽子的假定是錯的,所以他推斷出自己戴了黑帽子。
我們把這個問題推廣成如下的形式:
「有若干種顏色的帽子,每種若干頂。假設有若干個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,而且每個人都看得見在他前面所有人頭上帽子的顏色,卻看不見在他後面任何人頭上帽子的顏色。現在從最後那個人開始,
問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。一直往前問,那麼一定有一個人知道自己所戴的帽子顏色。」
當然要假設一些條件:
1)首先,帽子的總數一定要大於人數,否則帽子都不夠戴。
2)「有若干種顏色的帽子,每種若干頂,有若幹人」這個信息是隊列中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有人都知道所有人都知道所有人都知道此事,等等等等。但在這個條件中的「若干」不一定非要具體一一給出數字來。
這個信息具體地可以是象上面經典的形式,列舉出每種顏色帽子的數目「有3頂黑帽子,2頂白帽子,3個人」,也可以是「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人」,甚至連具體人數也可以不知道,「有不知多少人排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1」,這時候那個排在最後的人並不知道自己排在最後——直到開始問他時發現在他回答前沒有別人被問到,他才知道他在最後。在這個帖子接下去的部分當我出題的時候我將只寫出「有若干種顏色的帽子,每種若干頂,有若幹人」這個預設條件,因為這部分確定了,題目也就確定了。
3)剩下的沒有戴在大家頭上的帽子當然都被藏起來了,隊伍里的人誰都不知道都剩下些什麼帽子。
4)所有人都不是色盲,不但不是,而且只要兩種顏色不同,他們就能分別出來。當然他們的視力也很好,能看到前方任意遠的地方。他們極其聰明,邏輯推理是極好的。總而言之,只要理論上根據邏輯推導得出來,他們就一定推導得出來。相反地如果他們推不出自己頭上帽子的顏色,任何人都不會試圖去猜或者作弊偷看——不知為不知。
5)後面的人不能和前面的人說悄悄話或者打暗號。
當然,不是所有的預設條件都能給出一個合理的題目。比如有99頂黑帽子,99頂白帽子,2個人,無論怎麼戴,都不可能有人知道自己頭上帽子的顏色。另外,只要不是只有一種顏色的帽子,在只由一個人組成的隊伍里,這個人也是不可能說出自己帽子的顏色的。
但是下面這幾題是合理的題目:
1)3頂紅帽子,4頂黑帽子,5頂白帽子,10個人。
2)3頂紅帽子,4頂黑帽子,5頂白帽子,8個人。
3)n頂黑帽子,n-1頂白帽子,n個人(n>0)。
4)1頂顏色1的帽子,2頂顏色2的帽子,……,99頂顏色99的帽子,100頂顏色100的帽子,共5000個人。
5)有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人。
6)有不知多少人(至少兩人)排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1。
大家可以先不看我下面的分析,試著做做這幾題。
如果按照上面3頂黑帽2頂白帽時的推理方法去做,那麼10個人就可以把我們累死,別說5000個人了。但是3)中的n是個抽象的數,考慮一下怎麼解決這個問題,對解決一般的問題大有好處。
假設現在n個人都已經戴好了帽子,問排在最後的那一個人他頭上的帽子是什麼顏色,什麼時候他會回答「知道」?很顯然,只有在他看見前面n-1個人都戴著白帽時才可能,因為這時所有的n-1頂白帽都已用光,在他自己的腦袋上只能頂著黑帽子,只要前面有一頂黑帽子,那麼他就無法排除自己頭上是黑帽子的可能——即使他看見前面所有人都是黑帽,他還是有可能戴著第n頂黑帽。
現在假設最後那個人的回答是「不知道」,那麼輪到問倒數第二人。根據最後面那位的回答,他能推斷出什麼呢?如果他看見的都是白帽,那麼他立刻可以推斷出自己戴的是黑帽——要是他也戴著白帽,那麼最後那人應該看見一片白帽,問到他時他就該回答「知道」了。但是如果倒數第二人看見前面至少有一頂黑帽,他就無法作出判斷——他有可能戴著白帽,但是他前面的那些黑帽使得最後那人無法回答「知道」;他自然也有可能戴著黑帽。
這樣的推理可以繼續下去,但是我們已經看出了苗頭。最後那個人可以回答「知道」當且僅當他看見的全是白帽,所以他回答「不知道」當且僅當他至少看見了一頂黑帽。這就是所有帽子顏色問題的關鍵!
如果最後一個人回答「不知道」,那麼他至少看見了一頂黑帽,所以如果倒數第二人看見的都是白帽,那麼最後那個人看見的至少一頂黑帽在哪裡呢?不會在別處,只能在倒數第二人自己的頭上。這樣的推理繼續下去,對於隊列中的每一個人來說就成了:
「在我後面的所有人都看見了至少一頂黑帽,否則的話他們就會按照相同的判斷斷定自己戴的是黑帽,所以如果我看見前面的人戴的全是白帽的話,我頭上一定戴著我身後那個人看見的那頂黑帽。」
我們知道最前面的那個人什麼帽子都看不見,就不用說看見黑帽了,所以如果他身後的所有人都回答說「不知道」,那麼按照上面的推理,他可以確定自己戴的是黑帽,因為他身後的人必定看見了一頂黑帽——只能是第一個人他自己頭上的那頂。事實上很明顯,第一個說出自己頭上是什麼顏色帽子的那個人,就是從隊首數起的第一個戴黑帽子的人,也就是那個從隊尾數起第一個看見前面所有人都戴白帽子的人。
這樣的推理也許讓人覺得有點循環論證的味道,因為上面那段推理中包含了「如果別人也使用相同的推理」這樣的意思,在邏輯上這樣的自指式命題有點危險。但是其實這里沒有循環論證,這是類似數學歸納法的推理,每個人的推理都建立在他後面那些人的推理上,而對於最後一個人來說,他的身後沒有人,所以他的推理不依賴於其他人的推理就可以成立,是歸納中的第一個推理。稍微思考一下,我們就可以把上面的論證改得適合於任何多種顏色的推論:
「如果我們可以從假設斷定某種顏色的帽子一定會在隊列中出現,從隊尾數起第一個看不見這種顏色的帽子的人就立刻可以根據和此論證相同的論證來作出判斷,他戴的是這種顏色的帽子。現在所有我身後的人都回答不知道,所以我身後的人也看見了此種顏色的帽子。如果在我前面我見不到此顏色的帽子,那麼一定是我戴著這種顏色的帽子。」
當然第一個人的初始推理相當簡單:「隊列中一定有人戴這種顏色的帽子,現在我看不見前面有人戴這顏色的帽子,那它只能是戴在我的頭上了。」
對於題1)事情就變得很明顯,3頂紅帽子,4頂黑帽子,5頂白帽子給10個人戴,隊列中每種顏色至少都該有一頂,於是從隊尾數起第一個看不見某種顏色的帽子的人就能夠斷定他自己戴著這種顏色的帽子,通過這點我們也可以看到,最多問到從隊首數起的第三人時,就應該有人回答「知道」了,因為從隊首數起的第三人最多隻能看見兩頂帽子,所以最多看見兩種顏色,如果他後面的人都回答「不知道」,那麼他前面一定有兩種顏色的帽子,而他頭上戴的一定是他看不見的那種顏色的帽子。
題2)也一樣,3頂紅帽子,4頂黑帽子,5頂白帽子給8個人戴,那麼隊列中一定至少有一頂白帽子,因為其它顏色加起來一共才7頂,所以隊列中一定會有人回答「知道」。
題4)的規模大了一點,但是道理和2)完全一樣。100種顏色的5050頂帽子給5000人戴,前面99種顏色的帽子數量是1 …… 99=4950,所以隊列中一定有第100種顏色的帽子(至少有50頂),所以如果自己身後的人都回答「不知道」,那麼那個看不見顏色100帽子的人就可以斷定自己戴著這種顏色的帽子。
至於5)、6)「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人」以及「有不知多少人排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1」,原理完全相同,我就不具體分析了。
最後要指出的一點是,上面我們只是論證了,如果我們可以根據各種顏色帽子的數量和隊列中的人數判斷出在隊列中至少有一頂某種顏色的帽子,那麼一定有一人可以判斷出自己頭上的帽子的顏色。因為如果所有身後的人都回答「不知道」的話,那個從隊尾數起第一個看不見這種顏色的帽子的人就可以判斷自己戴了此顏色的帽子。但是這並不是說在詢問中一定是由他來回答「知道」的,因為還可能有其他的方法來判斷自己頭上帽子的顏色。比如說在題2)中,如果隊列如下:(箭頭表示隊列中人臉朝的方向)
白白黑黑黑黑紅紅紅白→
那麼在隊尾第一人就立刻可以回答他頭上的是白帽,因為他看見了所有的3頂紅帽子和4頂黑帽子,能留給他自己戴的只能是白帽子了

『貳』 3頂紅帽子 4頂黑帽子 5頂白帽子

你的推理正確,第6個人一定知道自己帽子顏色。

第10個人不知道,說明前面紅黑白都有,現在推出前9個中紅黑白分別最少有幾頂。
3紅4黑5白分別最多減2頂(因為減3頂就知道自己的顏色是減掉的那一種),所以最少有1紅2黑3白。這6頂中少了哪種顏色,第6個人就知道自己是這種顏色。

『叄』 有3頂紅帽子,4頂黑帽子,5頂白帽

因為要想使最後面的那個人不知道自己是什麼顏色的帽子,只有將三種顏色的帽子都留出一個,但是5-1=4 4-1=3 3-1=2 4+3+2=9 最後一個人只能從三種顏色中隨便選一個,所以他才說不知道,第9個人肯定自己的帽子顏色是黑的,那是因為前面的8個人的帽子的顏色是3頂紅帽子,5頂白帽子,那樣就只剩下黑帽子了.

『肆』 有3頂紅帽子,4頂黑帽子,5頂白帽子。讓...

問題中有錯誤。第一個人戴的必然是紅帽子!因為,最後一人一定看到前面有人戴紅帽子,否則他會知道自己一定戴的是紅帽子。第9人根據後面的人回答不知道,可以推斷後面的人肯定看到前面有人戴紅帽子。第9人回答不知道,證明他前面也有人戴紅帽子。以此類推,第8人、第7人、第6人……一直到第2人,他們都在前面看到了紅帽子。最前面的人據此判斷:自己戴的是紅帽子。

『伍』 有3頂紅帽子,4頂黑帽子,5頂白帽子。......。假設最前面那個人一定會知道自己戴的是黑帽子。為什麼

1)分析第10個人的情況。
第10個人說不知道,那麼說明前面9個人不可能出現紅3黑4,紅3白5,黑4白5的情況,即三種顏色的球,不可能兩種全部出現,不然的話,第10個人馬上可以知道自己是剩下來的那種顏色。
那麼,前面9個人,只可能是紅2黑3白4,紅3黑2白4,紅3黑3白3,紅2黑4白3,紅2黑4白3,紅1黑4白4,紅1黑3白5,紅2黑2白5這7種情況。

(2)分析第9個人的情況。
前面7種情況,每種情況可以分為3種,比如紅2黑3白4,第9個人是紅的情況,那麼其他8個人就是紅1黑3白4;如果第9個人是黑,那麼前面8個人就是紅2黑2白4;如果第9個人是白,那麼前面8個人就是紅2黑3白3。然後對於7種情況都進行這樣的操作,那麼理論上就是7*3=21種情況。但很快會發現,紅1黑4白4和紅1黑3白5的場合,第9個人不可能是紅色的,因為如果他是紅色的,那麼他馬上就可以推斷出自己不可能是黑或者白(不然第10個人不會說不知道),所以說,當他看到前面8個人是黑4白4或者黑3白5後,馬上可以知道是紅色的。現在題目要求是他不知道自己的顏色,所以,紅1黑4白4隻可能推出紅1黑4白3或者紅1黑3白4,同理,紅1黑3白5隻可能推出紅1黑2白5或者紅1黑3白4。因此,在第9個人說不知道的情況下,前面8個人只可能內是紅1黑3白4,紅2黑2白4,紅2黑3白3,紅3黑1白4,紅3黑2白3,紅3黑3白2,紅1黑4白3,紅2黑4白2,紅1黑2白5,紅2黑1白5,這10種情況(很多相同的情況都合並掉了。)

(3)分析第8個人的情況,第8個人同樣道理,如果要讓他說不知道,那麼紅1黑3白4的時候,他不可能是那個唯一的紅;紅3黑1白4的時候,他不可能是唯一的那個黑;紅1黑4白3的時候,他不可能是唯一的那個紅;紅2黑1白5的時候,他不可能是唯一的那個黑。

(4)分析第7個人的情況。
同樣道理,在第8,,9,10都不知道自己的顏色的情況下,7個人的場合,只可能是紅1黑2白4,紅1黑3白3,紅2黑1白4,紅2黑2白3,紅2黑3白2,紅3黑1白3,紅3黑3白1,紅1黑4白2,紅1黑1白5,這9種情況。

(5)現在規律很明顯了,通俗地講,每次到1就停住不再相減了,那麼最後必然會收攏到紅1黑1白1的場合,也就是說,第1,2,3個人,必然是紅,黑,白各1個,如果不是這個樣子的話,那麼後面4-10個人,肯定會有人能推理出自己帽子的顏色。第3個人,只要看第1個人,第2個人帽子的顏色,就會知道自己帽子的顏色,然後假設他說出來了,第2個人聽到第3個人帽子的顏色,再看到第1個人的帽子,就能知道自己帽子的顏色,也假設他說出來,那麼第1個人就可以知道自己帽子是什麼顏色的了。想要他是黑的,那麼2,3必定是1紅1白。
整個10個人可能是這樣的。
黑紅白 黑紅白 黑紅白 黑或白
黑白紅 黑白紅 黑白紅 黑或白

『陸』 邏輯問題

【61】你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎麼給紅色彈球最大的選中機會?在你的計劃中,得到紅球的准確幾率是多少?74/99

一個罐子放1個紅的,另一個放剩下的,幾率為50%×1+50%×49/99=75%

【62】你有四個裝葯丸的罐子,每個葯丸都有一定的重量,被污染的葯丸是沒被污染的重量+1.只稱量一次,如何判斷哪個罐子的葯被污染了?

四個罐子分別取0、1、2、3個,若與4×每罐原重相等就是不取的那個被污染了,反之就是多幾就是取幾顆的罐子污染了。

【63】對一批編號為1~100,全部開關朝上(開)的燈進行以下*作:凡是1的倍數反方向撥一次開關;2的倍數反方向又撥一次開關;3的倍數反方向又撥一次開關……問:最後為關熄狀態的燈的編號。

凡是平方數就是關的,不是就開著,1、4、9、16、25、36、49、64、81、100關著,這個很難解釋清楚,不懂找我。

【64】想像你在鏡子前,請問,為什麼鏡子中的影像可以顛倒左右,卻不能顛倒上下?

人眼是分左右的,而不是一上一下的

【65】一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?

大家都是黑的,因為甲看到乙、丙都是黑的,想:「如果自己是白的,乙會說:『丙是黑的,甲是白的,丙會根據這判斷出自己是黑的,而他在沉默,所以我是黑的。』而乙也在沉默所以我是黑的。」乙丙也這么想。

【68】有3頂紅帽子,4頂黑帽子,5頂白帽子。讓10個人從矮到高站成一隊,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。(所以最後一個人可以看見前面9個人頭上帽子的顏色,而最前面那個人誰的帽子都看不見。現在從最後那個人開始,問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。假設最前面那個人一定會知道自己戴的是黑帽子。為什麼?

這我不會

【69】假設排列著100個乒乓球,由兩個人輪流拿球裝入口袋,能拿到第100個乒乓球的人為勝利者。條件是:每次拿球者至少要拿1個,但最多不能超過5個,問:如果你是最先拿球的人,你該拿幾個?以後怎麼拿就能保證你能得到第100個乒乓球?

我拿4個(1、2、3、4號),剩下的96個,他不管拿幾個,我就拿到6個(我和他這輪拿的加起來為6)。這樣我拿到第10號不成問題,因為他最多拿5號到9號,這樣我能拿到10、16、22、28、34、40、46、52、58、64、70、76、82、88、94、100號。

【70】盧姆教授說:「有一次我目擊了兩只山羊的一場殊死決斗,結果引出了一個有趣的數學問題。我的一位鄰居有一隻山羊,重54磅,它已有好幾個季度在附近山區稱王稱霸。後來某個好事之徒引進了一隻新的山羊,比它還要重出3磅。開始時,它們相安無事,彼此和諧相處。可是有一天,較輕的那隻山羊站在陡峭的山路頂上,向它的競爭對手猛撲過去,那對手站在土丘上迎接挑戰,而挑戰者顯然擁有居高臨下的優勢。不幸的是,由於猛烈碰撞,兩只山羊都一命嗚呼了。

現在要講一講本題的奇妙之處。對飼養山羊頗有研究,還寫過書的喬治.阿伯克龍比說道:「通過反復實驗,我發現,動量相當於一個自20英尺高處墜落下來的30磅重物的一次撞擊,正好可以打碎山羊的腦殼,致它死命。」如果他說得不錯,那麼這兩只山羊至少要有多大的逼近速度,才能相互撞破腦殼?你能算出來嗎?

什麼叫逼近速度,這跟提有關嗎

【72】已知:每個飛機只有一個油箱,飛機之間可以相互加油(注意是相互,沒有加油機)一箱油可供一架飛機繞地球飛半圈,問題:為使至少一架飛機繞地球一圈回到起飛時的飛機場,至少需要出動幾架飛機?(所有飛機從同一機場起飛,而且必須安全返回機場,不允許中途降落,中間沒有飛機場)

3架

甲乙丙同時出發,到8分之1圈時,丙給甲乙各1/4油,使他們加滿,自己的1/4油供自己返回。到1/4圈時,乙給甲1/4油,自己的1/2供自己返回。甲繼續向前飛。乙到加油站時丙就出發,在3/4圈時甲油箱空,丙甲相遇,丙給甲1/4油,一起向前飛,7/8圈時丙甲油箱空,碰到了乙,把3/4箱油平分後正好用完到站。

【73】在9個點上畫10條直線,要求每條直線上至少有三個點?

我知道,到我空間里找

【74】一個岔路口分別通向誠實國和說謊國。來了兩個人,已知一個是誠實國的,另一個是說謊國的。誠實國永遠說實話,說謊國永遠說謊話。現在你要去說謊國,但不知道應該走哪條路,需要問這兩個人。請問應該怎麼問?

隨便問哪一個一句話:我想去誠實國,你的夥伴會指哪條路?照著這條路走即可。

【75】在一天的24小時之中,時鍾的時針、分針和秒針完全重合在一起的時候有幾次?都分別是什麼時間?你怎樣算出來的?

2次

正午12點和0點,很簡單,在分針時針相遇時,秒針在其他時間都在別處,等他趕上了,分針又離時針遠去了

『柒』 數奧題腦經急轉彎

這是我最早聽說的趣味邏輯題之一,是很小的時候父親告訴我的:

「有3頂黑帽子,2頂白帽子。讓三個人從前到後站成一排,給他
們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻
只能看見站在前面那些人的帽子顏色。(所以最後一個人可以看見前
面兩個人頭上帽子的顏色,中間那個人看得見前面那個人的帽子顏色
但看不見在他後面那個人的帽子顏色,而最前面那個人誰的帽子都看
不見。現在從最後那個人開始,問他是不是知道自己戴的帽子顏色,
如果他回答說不知道,就繼續問他前面那個人。事實上他們三個戴的
都是黑帽子,那麼最前面那個人一定會知道自己戴的是黑帽子。為什
么?」

答案是,最前面的那個人聽見後面兩個人都說了「不知道」,他
假設自己戴的是白帽子,於是中間那個人就看見他戴的白帽子。那麼
中間那個人會作如下推理:「假設我戴了白帽子,那麼最後那個人就
會看見前面兩頂白帽子,但總共只有兩頂白帽子,他就應該明白他自
己戴的是黑帽子,現在他說不知道,就說明我戴了白帽子這個假定是
錯的,所以我戴了黑帽子。」問題是中間那人也說不知道,所以最前
面那個人知道自己戴白帽子的假定是錯的,所以他推斷出自己戴了黑
帽子。

我們把這個問題推廣成如下的形式:

「有若干種顏色的帽子,每種若干頂。假設有若干個人從前到後
站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的
帽子的顏色,而且每個人都看得見在他前面所有人頭上帽子的顏色,
卻看不見在他後面任何人頭上帽子的顏色。現在從最後那個人開始,
問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問
他前面那個人。一直往前問,那麼一定有一個人知道自己所戴的帽子
顏色。」

當然要假設一些條件:

1)首先,帽子的總數一定要大於人數,否則帽子都不夠戴。
2)「有若干種顏色的帽子,每種若干頂,有若幹人」這個信息是隊列
中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有
人都知道所有人都知道所有人都知道此事,等等等等。但在這個條件
中的「若干」不一定非要具體一一給出數字來。這個信息具體地可以是
象上面經典的形式,列舉出每種顏色帽子的數目

「有3頂黑帽子,2頂白帽子,3個人」,

也可以是

「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不
知道哪種顏色是幾頂,有6個人」,

甚至連具體人數也可以不知道,

「有不知多少人排成一排,有黑白兩種帽子,每種帽
子的數目都比人數少1」,

這時候那個排在最後的人並不知道自己排在最後——直到開始問他時
發現在他回答前沒有別人被問到,他才知道他在最後。在這個帖子接
下去的部分當我出題的時候我將只寫出「有若干種顏色的帽子,每種
若干頂,有若幹人」這個預設條件,因為這部分確定了,題目也就確
定了。
3)剩下的沒有戴在大家頭上的帽子當然都被藏起來了,隊伍里的人誰
都不知道都剩下些什麼帽子。
4)所有人都不是色盲,不但不是,而且只要兩種顏色不同,他們就能
分別出來。當然他們的視力也很好,能看到前方任意遠的地方。他們
極其聰明,邏輯推理是極好的。總而言之,只要理論上根據邏輯推導
得出來,他們就一定推導得出來。相反地如果他們推不出自己頭上帽
子的顏色,任何人都不會試圖去猜或者作弊偷看——不知為不知。
5)後面的人不能和前面的人說悄悄話或者打暗號。

當然,不是所有的預設條件都能給出一個合理的題目。比如有99
頂黑帽子,99頂白帽子,2個人,無論怎麼戴,都不可能有人知道自
己頭上帽子的顏色。另外,只要不是只有一種顏色的帽子,在只由一
個人組成的隊伍里,這個人也是不可能說出自己帽子的顏色的。

但是下面這幾題是合理的題目:

1)3頂紅帽子,4頂黑帽子,5頂白帽子,10個人。
2)3頂紅帽子,4頂黑帽子,5頂白帽子,8個人。
3)n頂黑帽子,n-1頂白帽子,n個人(n>0)。
4)1頂顏色1的帽子,2頂顏色2的帽子,……,99頂顏色99的帽子,
100頂顏色100的帽子,共5000個人。
5)有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是
幾頂,有6個人。
6)有不知多少人(至少兩人)排成一排,有黑白兩種帽子,每種帽子
的數目都比人數少1。

大家可以先不看我下面的分析,試著做做這幾題。

如果按照上面3頂黑帽2頂白帽時的推理方法去做,那麼10個人就
可以把我們累死,別說5000個人了。但是3)中的n是個抽象的數,考
慮一下怎麼解決這個問題,對解決一般的問題大有好處。

假設現在n個人都已經戴好了帽子,問排在最後的那一個人他頭
上的帽子是什麼顏色,什麼時候他會回答「知道」?很顯然,只有在
他看見前面n-1個人都戴著白帽時才可能,因為這時所有的n-1頂白
帽都已用光,在他自己的腦袋上只能頂著黑帽子,只要前面有一頂黑
帽子,那麼他就無法排除自己頭上是黑帽子的可能——即使他看見前
面所有人都是黑帽,他還是有可能戴著第n頂黑帽。

現在假設最後那個人的回答是「不知道」,那麼輪到問倒數第二
人。根據最後面那位的回答,他能推斷出什麼呢?如果他看見的都是
白帽,那麼他立刻可以推斷出自己戴的是黑帽——要是他也戴著白帽,
那麼最後那人應該看見一片白帽,問到他時他就該回答「知道」了。
但是如果倒數第二人看見前面至少有一頂黑帽,他就無法作出判斷
——他有可能戴著白帽,但是他前面的那些黑帽使得最後那人無法回
答「知道」;他自然也有可能戴著黑帽。

這樣的推理可以繼續下去,但是我們已經看出了苗頭。最後那個
人可以回答「知道」當且僅當他看見的全是白帽,所以他回答「不知
道」當且僅當他至少看見了一頂黑帽。這就是所有帽子顏色問題的關
鍵!

如果最後一個人回答「不知道」,那麼他至少看見了一頂黑帽,
所以如果倒數第二人看見的都是白帽,那麼最後那個人看見的至少一
頂黑帽在哪裡呢?不會在別處,只能在倒數第二人自己的頭上。這樣
的推理繼續下去,對於隊列中的每一個人來說就成了:

「在我後面的所有人都看見了至少一頂黑帽,否則的話他們
就會按照相同的判斷斷定自己戴的是黑帽,所以如果我看見
前面的人戴的全是白帽的話,我頭上一定戴著我身後那個人
看見的那頂黑帽。」

我們知道最前面的那個人什麼帽子都看不見,就不用說看見黑帽
了,所以如果他身後的所有人都回答說「不知道」,那麼按照上面的
推理,他可以確定自己戴的是黑帽,因為他身後的人必定看見了一頂
黑帽——只能是第一個人他自己頭上的那頂。事實上很明顯,第一個
說出自己頭上是什麼顏色帽子的那個人,就是從隊首數起的第一個戴
黑帽子的人,也就是那個從隊尾數起第一個看見前面所有人都戴白帽
子的人。

這樣的推理也許讓人覺得有點循環論證的味道,因為上面那段推
理中包含了「如果別人也使用相同的推理」這樣的意思,在邏輯上這
樣的自指式命題有點危險。但是其實這里沒有循環論證,這是類似數
學歸納法的推理,每個人的推理都建立在他後面那些人的推理上,而
對於最後一個人來說,他的身後沒有人,所以他的推理不依賴於其他
人的推理就可以成立,是歸納中的第一個推理。稍微思考一下,我們
就可以把上面的論證改得適合於任何多種顏色的推論:

「如果我們可以從假設斷定某種顏色的帽子一定會在隊列中
出現,從隊尾數起第一個看不見這種顏色的帽子的人就立刻
可以根據和此論證相同的論證來作出判斷,他戴的是這種顏
色的帽子。現在所有我身後的人都回答不知道,所以我身後
的人也看見了此種顏色的帽子。如果在我前面我見不到此顏
色的帽子,那麼一定是我戴著這種顏色的帽子。」

當然第一個人的初始推理相當簡單:「隊列中一定有人戴這種顏色的
帽子,現在我看不見前面有人戴這顏色的帽子,那它只能是戴在我的
頭上了。」

對於題1)事情就變得很明顯,3頂紅帽子,4頂黑帽子,5頂白帽
子給10個人戴,隊列中每種顏色至少都該有一頂,於是從隊尾數起第
一個看不見某種顏色的帽子的人就能夠斷定他自己戴著這種顏色的帽
子,通過這點我們也可以看到,最多問到從隊首數起的第三人時,就
應該有人回答「知道」了,因為從隊首數起的第三人最多隻能看見兩
頂帽子,所以最多看見兩種顏色,如果他後面的人都回答「不知道」,
那麼他前面一定有兩種顏色的帽子,而他頭上戴的一定是他看不見的
那種顏色的帽子。

題2)也一樣,3頂紅帽子,4頂黑帽子,5頂白帽子給8個人戴,
那麼隊列中一定至少有一頂白帽子,因為其它顏色加起來一共才7頂,
所以隊列中一定會有人回答「知道」。

題4)的規模大了一點,但是道理和2)完全一樣。100種顏色的5050
頂帽子給5000人戴,前面99種顏色的帽子數量是1+……+99=4950,
所以隊列中一定有第100種顏色的帽子(至少有50頂),所以如果自
己身後的人都回答「不知道」,那麼那個看不見顏色100帽子的人就
可以斷定自己戴著這種顏色的帽子。

至於5)、6)「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不
知道哪種顏色是幾頂,有6個人」以及「有不知多少人排成一排,有
黑白兩種帽子,每種帽子的數目都比人數少1」,原理完全相同,我
就不具體分析了。

最後要指出的一點是,上面我們只是論證了,如果我們可以根據
各種顏色帽子的數量和隊列中的人數判斷出在隊列中至少有一頂某種
顏色的帽子,那麼一定有一人可以判斷出自己頭上的帽子的顏色。因
為如果所有身後的人都回答「不知道」的話,那個從隊尾數起第一個
看不見這種顏色的帽子的人就可以判斷自己戴了此顏色的帽子。但是
這並不是說在詢問中一定是由他來回答「知道」的,因為還可能有其
他的方法來判斷自己頭上帽子的顏色。比如說在題2)中,如果隊列
如下:(箭頭表示隊列中人臉朝的方向)

白白黑黑黑黑紅紅紅白→

那麼在隊尾第一人就立刻可以回答他頭上的是白帽,因為他看見了所
有的3頂紅帽子和4頂黑帽子,能留給他自己戴的只能是白帽子了

與有3頂紅帽子4頂黑帽子5頂白帽子相關的資料

熱點內容
搭配牛仔褲的高挑美女 瀏覽:107
韓版高腰衛衣配啥衣服好看圖片 瀏覽:781
29型號的褲子 瀏覽:407
森馬499男裝羽絨服 瀏覽:278
黑色牛仔布帽子磨損 瀏覽:926
粉色體恤黑褲子陪什麼顏色鞋子 瀏覽:474
西裝外套來自massimo 瀏覽:175
濟南世茂有哪些女裝 瀏覽:146
迪麗熱巴紅色外套 瀏覽:508
海寧皮衣男裝羽絨服價 瀏覽:229
廣州沙河襯衫批發市場 瀏覽:199
台灣高清制服美腿 瀏覽:702
佛山老牌子襯衫 瀏覽:55
套裝夏季女裝批發 瀏覽:825
有3頂紅帽子4頂黑帽子5頂白帽子 瀏覽:677
白色帽衫衛衣搭配什麼外套 瀏覽:396
老年媽媽帽子編織 瀏覽:30
真絲綠旗袍美女 瀏覽:77
雙色帆布鞋配什麼褲子好看 瀏覽:476
魔術師戴的帽子叫什麼帽 瀏覽:871