㈠ 我这里有五顶帽子,三顶黑的,俩顶白的,你们闭上眼睛,我给你们每人戴上一顶,要是谁先猜出谁赢
白色
首先重复一下问题:有十顶白帽子和九顶黑帽子,有10个人,每人头上一顶帽子
。前后排成一列,每个人只能看到前面所有人的帽子的颜色,从第三个人开始到第十个人都不知道自己帽子的颜色。第二个人知道自己帽子的颜色,问第二个人的帽子的颜色是什么?
原因:
如果第10个人看到前面9个人都戴黑帽子就会知道自己戴白帽子,所以,他能看到的人(前面9个人)里面至少有一个人戴着白帽子;于是,如果第9个人看到前面8个人都戴黑帽子就会知道自己戴白帽子,所以,他可以看到的前8个人里面也有人戴白帽子;已此类推至第三个人为止都因为看到自己前面人戴的帽子有人戴白帽子所以不能判断自己的帽子颜色。
接下来,如果第1个人戴白帽子那么同理第2个也不能判断自己戴什么颜色的帽子,只有第2个人看到第1个人戴黑帽子的时候才可以判断出自己戴的是白帽子(因为前面9个人全部戴白帽子的时候3-10人也不能判断自己帽子的颜色)。
问题的答案到此结束,但是问题里有个隐含条件——第2个人知道了自己的帽子颜色,表示第1个人戴黑帽子,所以第1个人也是知道帽子颜色的,这一点在问题里被省略!
㈡ 屋里有五顶帽子,三顶黑的,两顶白的,进去三个人带帽子,带好后藏起来两顶,第一个人说不知道自己的帽子
分析与解答:
(1)退一步思考,从原来的问题里减少一个人和一顶帽子。先不考虑三个人两顶黑帽子,而只考虑两个人一顶黑帽子。这一简化,思考起来就容易多了,只有一顶黑帽子,如果我戴的是黑帽子,对方便立刻会说,他戴的是白帽子,现在对方没有立刻回答,而在踌躇,可见我戴的不是黑帽子而是白帽子。
(2)进一步推想到三个人两顶黑帽子。如果我头上戴的是黑帽子,就变成前面已讨论的“两个人一顶黑帽子”的问题了。这时他俩可立刻回答而不会踌躇,说明我头上戴的不是黑帽子,而是白帽子。
㈢ 一位教师让三位聪明的学生看了一下准备好的五顶帽子:三顶白,两顶黑然后让他们闭上眼睛,给每人带上一顶
我国著名的数学家华罗庚曾编过这样一道开启儿童智力的趣题,题目是:
一位老师让三个聪明的学生看了一下事先准备好的5顶帽子:3白色的,2顶黑色的,然后让他们闭上眼睛,他替每个学生戴上一顶帽子,并把其余2顶藏起来,让学生睁开眼睛后各自说出自己戴的帽子的颜色。3人睁眼互相看了一下,踌躇了一下,觉得很为难。继而异口同声地说自己头上戴的是什么颜色的帽子。同学们,你知道这三位同学是怎样判断的吗?
此题判断中可能出现这样三种情况:(1)两黑一白;(2)两白一黑;(3)三白。如果是第一种情况,戴白帽子的学生一看便能说出自己戴的帽子的颜色,而实际上三人睁眼互看了一下,踌躇了一下,没一人马上说出,这表明不是第一种情况。
那么再看看是不是第二种情况,如果其中有1人戴黑帽子,另外两人必定会立刻说出自己戴白帽子,而不会踌躇了一会“,显得为难的样子。所以,这种情况也不符合。
那么,只有第三种情况的判断是正确的。因为三人均为难,说明谁也没有看见有人戴黑帽子。于是,3位聪明的学生才会异口同声地说出自己戴的是白帽子。
这一名题是华罗庚在传统的逻辑推理问题的基础上改编的,从中我们不难看出著名数学家的内在功力,体现了华老高超的思维技巧。
㈣ 同事出了个推理题,觉得蛮有意思,分享给大家:有5顶帽子,3黑2白。三个聪明人戴
1.首先考虑,如果两个人都戴黑帽子,而自己戴白帽子机率最大,首先想到的是自己戴白帽子.如果他喊出白帽子,就等于告诉了对方答案.所以三人都考虑了很久,等待对方作答,这只能说明他们全戴黑帽子.. 2.同上,乙和丙报出了自己可能是白帽子,告知了甲肯定了答案..
㈤ 有五顶帽子,其中有三顶白的,两顶黑的。叫三个人来,把他们的眼睛蒙住,把其中三顶给他们带好,在把其他
a看到两顶白色帽子,第一判断无法做出,因此他会想其他人的反应,因为他看到b和c都是白色,所以他假设任何一人的反应均可,这里取b。a假设自己头上是黑色,则b看到的是黑色和白色,这时b会看c的反应,如果b自己头上是黑色则c会第一时间喊出白色,c没有喊,则b会在第二时间喊出白色。由于a知道b和c相同,因此,如果b和c第二时间同时喊出白色,则a知道自己是黑色。事实上并没有两个人先喊白色,因此结论就是自己也是白色,每个人看到的都是两顶白色帽子,所以在第三时间上三个人同时喊出白色。
㈥ 现在有五顶帽子,三顶白色娘订,黑色老师分别给每人戴上一顶帽子。请问甲带的是
就是两个白色.设两个人分别是A和B,假如A是黑,B就有3/4的几率为白,如果我是B,我就会很快猜我是白色.但是为什么B会想一会儿呢,那是因为A是白**头上的帽子颜色各占一半的几率,所以B就会犹豫,所以A是白色.同理,B也是白色、
㈦ 一个教授,做了五顶帽子,三顶白的两顶黑的,给三个人戴,一人一顶,戴时眼是闭着的,戴好后,三人睁开...
这个前提是:他们三个足够聪明。
A 想:如果我截的是黑的,那么 B、C 都能看到我截的黑的,所以只要 B、C 中有一个是截的黑的,那么另一人就会立即说出自己截的是白的。可是没有人立即说出自己截的是白的,因此我截的不是黑的。
他们每个人都这么想,因此就迟疑了一会后都猜对了。
㈧ 有3个人,5顶帽子(2顶黑色3顶白色的帽子)
首先假设这3个人是A B C
A看到了2个黑帽子,他假设自己带的是白帽子(以下蓝色部分是A的心理活动,紫色部分是A假想中的B的心理活动)--
那么B看到的应该是1黑1白
这时候如果B的心理活动应该是--假设自己戴的也是白帽子,C应该很容易的知道自己带的是黑帽子;而现在C并没有马上回答,则说明了B他自己带的是黑帽子(此假设同样适用于C)。
而现在B C都没有马上判断出自己带的是黑帽子,所以A自己带的不是白帽子。
㈨ 共有五顶帽子,三个白的,两个黑的,教授叫了三位最得意的学生,三人纵排站,然后分别给他们戴上帽子,第
因为他看见第二个人和第三个人的帽子是黑色的,所以他说他的帽子是白色的
㈩ 问:有5顶帽子,三个黑色,两个白色。有三个人:A、B、C。三人按照顺序前后坐好。现在把5顶帽子中的任意三
你的问题没说完,请你说完
他戴的是黑帽子 第三个人 只有前2个人是白色帽子,第三个人才会确定自己是黑色的话。
别的情况都是没有办法决定自己带的是所戴的帽子,别的情况只能猜,不能判断他们自己的帽子