① DNA甲基轉移酶的分類及作用
在哺乳動物中,目前已發現4種DNA甲基轉移酶(Dnmts),根據結構和功能的差異分為兩大類:分別以Dnmt1和Dnmt3為代表。前者主要參與甲基化狀態的維持,也是非CpG位點從頭甲基化所必需,並與甲基化狀態的延伸有關;後者包括Dnmt3a、Dnmt3b,以及Dnmt3L等,是主要的從頭甲基化酶,而Dnmt2的歸屬和功能尚不十分明確
帽子結構是指在真核生物中轉錄後修飾形成的成熟mRNA在5'端的一個特殊結構,即m7GPPPN結構,又稱為甲基鳥苷帽子。它是在RNA三磷酸酶,mRNA鳥苷醯轉移酶,mRNA(鳥嘌呤-7)甲基轉移酶和mRNA(核苷-2』)甲基轉移酶催化形成的。
③ 真核生物帽子結構指的是什麼
mRNA的加工修飾包括:5』 端形成帽子結構、3』端加polyA、剪接除去內含子和甲基化。
①在5』-端加帽 成熟的真核生物mRNA的5』-端有m7GPPPN結構,稱為甲基鳥苷帽子。
它是在RNA三磷酸酶,mRNA鳥苷醯轉移酶,mRNA(鳥嘌呤-7)甲基轉移酶和mRNA(核苷-2』)甲基轉移酶催化形成的。甲基化程度不同可形成3種類型的帽子:CAP 0型、CAP I型和CAP II型。鳥苷以5』-5』焦磷酸鍵與初級轉錄本的5』-端相連。當G第7位碳原子被甲基化形成m7GPPPN時,此時的帽子稱為「帽子0」。存在於單細胞。如果轉錄本的第一個核苷酸的2『-O位也甲基化,形成m7GPPPNm,稱為「帽子1」,普遍存在;如果轉錄本的第一、二個核苷酸的2『-O位均甲基化,成為m7G-PPPNmNm,稱為「帽子2」,10~15%存在此結構。真核生物帽子結構的復雜程度與生物進化程度關系密切。
5』帽子的功能mRNA 5』-端帽子結構是mRNA翻譯起始的必要結構,對核糖體對mRNA的識別提供了信號,協助核糖體與mRNA結合,使翻譯從AUG開始。
帽子結構可增加mRNA的穩定性,保護mRNA免遭5』 →3『核酸外切酶的攻擊。
④ RNA的帽子結構是如何產生的
我不太懂你的問題,怎麼是來自外顯子的?不是直接由酶加工來的帽子結構嗎?這個帽子結構跟原來的DNA應該是沒關系的,而是由酶填上去的一段序列。
當然編碼區是來自DNA的外顯子的轉錄。
而多聚a尾的產生是當轉錄停止後,mRNA鏈會由核酸外切酶及RNA聚合酶切開。切開位點的附近有著AAUAAA序列。當mRNA被切開後,會加入50-250個腺苷到切開位點的3'端上。這個反應是由多聚腺苷酸聚合酶催化的。
下面是概括的介紹:
真核生物DNA轉錄生成的原始轉錄產物mRNA前體是核不均一RNA(heterogeneous nuclear RNA,hnRNA),即mRNA初級產物中含有不編碼任何氨基酸的插入序列,該序列由內含子(intron)編碼,這種內含子將編碼序列外顯子(exon)隔開,所以前體mRNA分子一般比成熟mRNA大4~10倍,必須經過加工修飾才能作為蛋白質翻譯的模板。其加工修飾主要包括5′端加「帽」(capping)和甲基化修飾、3′端加polyA 「尾」(tailing)和剪去內含子拼接外顯子等。
它是在RNA三磷酸酶,mRNA鳥苷醯轉移酶,mRNA(鳥嘌呤-7)甲基轉移酶和mRNA(核苷-2』)甲基轉移酶催化形成的。
mRNA的帽子結構(GpppmG—)是在5』-端形成的。轉錄產物第一個核苷酸往往是5』-三磷酸鳥苷pppG。mRNA成熟過程中,先由磷酸酶把5』-pppG—水解,生成5』-ppG或5』-pG—。然後, 5』-端與另一三磷酸鳥苷(pppG)反應,生成三磷酸雙鳥苷。在甲基化酶的作用下,第一或第二個鳥嘌呤鹼基發生甲基化,形成帽子結構。
不敢保證答案是正確的,還有待你去多看書驗證~
⑤ 甲基轉移酶的介紹
甲基轉移酶,已知有各種不同的轉甲基酶,以S-腺苷蛋氨酸、甜菜鹼(betain)和二甲基噻亭(dimethylthetin)作為甲基的供體,把氨基、羥基、硫氫基(thiol)甲基化。結合在四氫葉酸上的活性C1單位的還原而生成甲基,通過5-甲基四氫葉酸轉甲基酶與同型半胱氨酸(homocysteine)被甲基化而生成蛋氨酸。這種酶是以鈷胺醯胺(cobami-de)作為輔酶的。
⑥ 新冠病毒走向自我滅絕有研究支撐嗎
據世衛組織數據顯示,從今年九月份開始,全球新冠新增確診人數大幅下降。令人感到欣慰的是,很多12歲以下兒童無法接種疫苗的情況下,兒童病例也在不斷下降。
很多人認為這是封鎖和疫苗的功勞,但前段時間一項關於新冠的最新研究讓全球的科研人員都震驚了,疫情問題得以緩解可能還因為德爾塔變異毒株自我毀滅!
為什麼日本的這項研究會說新冠病毒會自己消失?主要是修復德爾塔變異株突變的酵素「nsp14」發生變化,導致病毒來不及修復,然後就自我毀滅了。簡單來說,就是修復更不上,最後死了。
從以上研究我們還是能看出的,新冠病毒自我滅絕的情況的是真的,但不會集體自我滅絕,所以筆者認為日本說第五波疫情得到緩解是因為病毒的自殺,不是最主要原因。個別自我滅絕現象,應該是存在的,但全球范圍自我滅絕,說法有點牽強了。
德爾塔毒株現在已經成為全球范圍的心病,最早在印度發現,病毒變異後開始逐漸傳播,傳播過程中變異加強,最終形成了傳播力極強的德爾塔株,接著傳遍全球。這說明什麼?是德爾塔株傳遍全球,不是全球病毒變異為德爾塔株。
根據日本的這份研究,病毒必須變異才能自我滅亡,但如果它的變異不是自我滅亡的方向是不是就不會死亡了。
所以,日本的這項研究頂多算一個孤證,還需要很多研究來旁證或經過N次證明,這樣才能確認新冠病毒的變異會朝著自我滅亡的方向選擇。
據專業人士稱,日本的這項研究和疫情走勢是完全符合演化理論的,也有初步的科學證據做支撐,值得全球科研人員的關注。
最後,筆者希望我們能早一點戰勝新冠病毒,早日回到正常生活!
⑦ basic region leucine zipper
一、真核基因組結構特點
• 真核基因組結構龐大 3×109bp、染色質、核膜
• 單順反子
• 基因不連續性 斷裂基因(interrupted gene)、內含子(intron)、 外顯子(exon)
• 非編碼區較多 多於編碼序列(9:1)
• 含有大量重復序列
原核生物基因組結構特點
基因組很小,大多隻有一條染色體
結構簡單
存在轉錄單元多順反子
有重疊基因
二、真核細胞與原核細胞在基因轉錄、翻譯及DNA的空間結構方面存在以下幾個方面的差異
① 在真核細胞中,一條成熟的mRNA鏈只能翻譯出一條多肽鏈,很少存在原核生物中常見的多基因操縱子形式。
② 真核細胞DNA與組蛋白和大量非組蛋白相結合,只有一小部分DNA是裸露的。
③ 高等真核細胞DNA中很大部分是不轉錄的,大部分真核細胞的基因中間還存在不被翻譯的內含子。
④ 真核生物能夠有序地根據生長發育階段的需要進行DNA片段重排,還能在需要時增加細胞內某些基因的拷貝數。
⑤ 在真核生物中,基因轉錄的調節區相對較大,它們可能遠離啟動子達幾百個甚至上千個鹼基對,這些調節區一般通過改變整個所控制基因5』上游區DNA構型來影響它與RNA聚合酶的結合能力。
在原核生物中,轉錄的調節區都很小,大都位於啟動子上游不遠處,調控蛋白結合到調節位點上可直接促進或抑制RNA聚合酶與它的結合。
三、基本概念
1、簡單多基因家族
簡單多基因家族中的基因一般以串聯方式前後相連。
2、復雜多基因家族
復雜多基因家族一般由幾個相關基因家族構成,基因家族之間由間隔序列隔開,並作為獨立的轉錄單位。現已發現存在不同形式的復雜多基因家族。
(二)斷裂基因
• 基因的編碼序列在DNA分子上是不連續的,為非編碼序列所隔開,其中編碼的序列稱為外顯子,非編碼序列稱內含子。
• 外顯子(Exon) :真核細胞基因DNA中的編碼序列,這些序列被轉錄成RNA並進而翻譯為蛋白質。
• 內含子(Intron) :真核細胞基因DNA中的間插序列,這些序列被轉錄成RNA,但隨即被剪除而不翻譯。
1、外顯子與內含子的連接區
指外顯子和內含子的交界或稱邊界序列,它有兩個重要特徵:
• 內含子的兩端序列之間沒有廣泛的同源性
• 連接區序列很短,高度保守,是RNA剪接的信號序列
2、外顯子與內含子的可變調控
• 組成型剪接:一個基因的轉錄產物通過剪接只能產生一種成熟的mRNA。
• 選擇性剪接:同一基因的轉錄產物由於不同的剪接方式形成不同mRNA。
圖 小鼠澱粉酶(amy)基因利用不同啟動子產生兩個不同的mRNA
(三)假基因
是基因組中因突變而失活的基因,無蛋白質產物。一般是啟動子出現問題。
9.6 真核生物基因表達調控的特點和種類
9.7 真核生物DNA水平上的基因表達調控
9.8 真核生物轉錄水平上的基因表達調控
9.9 真核基因翻譯水平上的調控
9.6 真核生物基因表達調控的特點和種類
一、真核生物基因表達調控的特點
二、真核生物基因表達調控的種類
一、真核生物基因表達調控的特點
原核生物的調控系統就是要在一個特定的環境中為細胞創造高速生長的條件,或使細胞在受到損傷時,盡快得到修復,所以,原核生物基因表達的開關經常是通過控制轉錄的起始來調節的。
真核基因表達調控的最顯著特徵是能在特定時間和特定的細胞中激活特定的基因,從而實現"預定"的、有序的、不可逆轉的分化、發育過程,並使生物的組織和器官在一定的環境條件范圍內保持正常功能。
真核生物基因表達調控與原核的共同點:
• 基因表達都有轉錄水平和轉錄後的調控,且以轉錄水平調控為最重要;
• 在結構基因上游和下游、甚至內部存在多種調控成分,並依靠特異蛋白因子與這些調控成分的結合與否調控基因的轉錄。
真核生物基因表達調控與原核的不同點:
1、真核基因表達調控的環節更多:轉錄與翻譯間隔進行,具有多種原核生物沒有的調控機制;個體發育復雜,具有調控基因特異性表達的機制。
2、真核生物活性染色體結構的變化對基因表達具有調控作用:DNA拓撲結構變化、DNA鹼基修飾變化 、組蛋白變化;
3、正性調節佔主導,且一個真核基因通常有多個調控序列,需要有多個激活物。
二、真核生物基因表達調控的種類
根據其性質可分為兩大類:
一是瞬時調控或稱為可逆性調控,它相當於原核細胞對環境條件變化所做出的反應。瞬時調控包括某種底物或激素水平的升降,及細胞周期不同階段中酶活性和濃度的調節。
二是發育調控或稱不可逆調控,是真核基因調控的精髓部分,它決定了真核細胞生長、分化、發育的全部進程。
根據基因調控在同一事件中發生的先後次序又可分為:
– DNA水平調控 Replicational regulation
– 轉錄水平調控 transcriptional regulation
– 轉錄後水平調控 post transcriptional regulation
– 翻譯水平調控 translational regulation
– 蛋白質加工水平的調控 regulation of protein maturation
9.7 真核生物DNA水平上的基因表達調控
一、基因丟失
二、基因擴增
三、基因重排
四、DNA的甲基化與基因調控
五、染色質結構與基因表達調控
一、基因丟失
• 丟失一段DNA或整條染色體的現象。
• 在細胞分化過程中,可以通過丟失掉某些基因而去除這些基因的活性。某些原生動物、線蟲、昆蟲和甲殼類動物在個體發育中,許多體細胞常常丟失掉整條或部分的染色體,只有將來分化產生生殖細胞的那些細胞一直保留著整套的染色體。
• 目前,在高等真核生物(包括動物、植物)中尚未發現類似的基因丟失現象。
圖 馬蛔蟲受精卵的早期分裂
• 馬蛔蟲2n=2,但染色體上有多個著絲粒。第一次卵裂是橫裂,產生上下2個子細胞。第二次卵裂時,一個子細胞仍進行橫裂,保持完整的基因組,而另一個子細胞卻進行縱向分裂,丟失部分染色體。
圖 小麥癭蚊的染色體丟棄
癭蚊卵跟果蠅相似(始核分裂胞質不分裂),其卵的後端含有一種特殊的細胞質
極細胞質核→保持了全部40條染色體→生殖細胞
其他細胞質區域核→丟失32條、留8條→體細胞
二、基因擴增
• 基因擴增是指某些基因的拷貝數專一性增大的現象,它使得細胞在短期內產生大量的基因產物以滿足生長發育的需要,是基因活性調控的一種方式。
• 如非洲爪蟾卵母細胞中rDNA的基因擴增是因發育需要而出現的基因擴增現象。
發育或系統發生中的倍性增加在植物中普遍存在
基因組拷貝數增加,即多倍性,在植物中是非常普遍的現象。基因組拷貝數增加使可供遺傳重組的物質增多,這可能構成了加速基因進化、基因組重組和最終物種形成的一種方式。
三、基因重排
• 將一個基因從遠離啟動子的地方移到距它很近的位點從而啟動轉錄,這種方式被稱為基因重排。
• 通過基因重排調節基因活性的典型例子是免疫球蛋白結構基因的表達。
• 在人類基因組中,所有抗體的重鏈和輕鏈都不是由固定的完整基因編碼的,而是由不同基因片段經重排後形成的完整基因編碼的。
• 完整的重鏈基因由VH、D、J和C四個基因片斷組合而成。
• 完整的輕鏈基因由VL、J和C 3個片段組合而成。
人類基因組中抗體基因片斷
產生免疫球蛋白分子多樣性的遺傳控制
重鏈和輕鏈的不同組合,κ、λ、H;
在重鏈中,V、D、J和C片段的組合;
κ輕鏈中V和C的組合;
λ輕鏈中V、J和C的組合;
基因片段之間的連接點也可以在幾個bp的范圍內移動。
因此,可以從約300個抗體基因片段中產生109 數量級的免疫球蛋白分子。
四、DNA的甲基化與基因調控
1、DNA的甲基化
• 胞嘧啶被甲基化修飾形成5-甲基胞嘧啶(mC)
• 幾乎所有的mC與其3』的鳥嘌呤以5』 mCpG3』的形式存在。
• 當兩條鏈上的胞嘧啶都被
甲基化時稱為完全甲基化。
• 一般在復制剛完成時,子鏈
上的C呈非甲基化狀態,稱
為半甲基化。
• 在真核生物中,5-甲基胞嘧啶主要出現在CpG序列、CpXpG、CCA/TGG和GATC中
• CpG二核苷酸通常成串出現在DNA上,CpG島
甲基化位點的檢測
• 特殊的限制性內切酶——同裂酶
• HpaⅡ識別並切割未甲基化的CCGG (C↓CGG)
• MspⅠ識別無論是否甲基化的CCGG (C↓CGG或C↓CmGG)
真核生物細胞內存在兩種甲基化酶活性:
• 構建性甲基轉移酶:作用於非甲基化位點,對發育早期DNA甲基化位點的確定起重要作用。
• 維持性甲基轉移酶:作用於半甲基化位點,使子代細胞具備親代的甲基化狀態。
• 在一些不表達的基因中,啟動區的甲基化程度很高,而處於活化狀態的基因則甲基化程度較低。
2.親本印記(imprinting)
• 印記:來源於父母本的一對等位基因表達不同。如源於父本的IGF-Ⅱ (胰島素樣生長因子Ⅱ)基因可表達,而源於母本的則不能表達。這是由於卵母細胞中的IGF-Ⅱ 已被甲基化,而精子中的IGF-Ⅱ未被甲基化,所以這一對等位基因在合子中表現不同。
• 目前在人類和鼠身上已辨明了20種印跡基因。大多數人類的印跡基因集中在三個簇中。在每個基因簇上都存在著特異的印記盒 (imprinting box),能順式調節印跡基因的親本特異性表達,這些位點表現出親本特異性的甲基化作用和去甲基化作用。
3、DNA甲基化抑制基因轉錄的機理
DNA甲基化導致某些區域DNA構象變化,從而影響了蛋白質與DNA的相互作用,抑制了轉錄因子與啟動區DNA的結合效率。
五、染色質結構與基因表達調控
(一)活性染色質
• 按功能狀態的不同可將染色質分為活性染色質和非活性染色質:
• 活性染色質是指具有轉錄活性的染色質;
• 非活性染色質是指沒有轉錄活性的染色質。
• 真核細胞中基因轉錄的模板是染色質而不是裸露的DNA,因此染色質呈疏鬆或緊密結構,即是否處於活化狀態是決定RNA聚合酶能否有效行使轉錄功能的關鍵。
活性染色質的主要特點
• 在結構上:
• 活性染色質上具有DNase I 超敏感位點
• 活性染色質上具有基因座控制區
• 活性染色質上具有核基質結合區(MAR序列)
活性染色質上具有DNase I 超敏感位點。每個活躍表達的基因都有一個或幾個超敏感位點,大部分位於基因5´端啟動子區域。
活性染色質上具有核基質結合區( matrix attachment region ,MAR)。MAR一般位於DNA放射環或活性轉錄基因的兩端。在外源基因兩端接上MAR,可增加基因表達水平10倍以上,說明MAR在基因表達調控中有作用。是一種新的基因調控元件。
(二)活性染色體結構變化
1、對核酸酶敏感
活化基因常有超敏位點,位於調節蛋白結合位點附近。
2、DNA拓撲結構變化
• 天然雙鏈DNA均以負性超螺旋構象存在;
• 基因活化後
3、DNA鹼基修飾變化
– 真核DNA約有5%的胞嘧啶被甲基化,
– 甲基化范圍與基因表達程度呈反比。
4、組蛋白變化
① 富含Lys組蛋白水平降低
② H2A, H2B二聚體不穩定性增加
③ 組蛋白修飾:高乙醯化
④ H3組蛋白巰基暴露
9.8 真核生物轉錄水平上的基因表達調控
一、真核生物與原核生物轉錄調控的差異
二、真核生物轉錄調控順式作用元件
三、反式作用因子
一、真核生物與原核生物轉錄調控的差異
1.真核生物轉錄過程涉及復雜的染色質結構變化;
2.原核生物調節元件種類少,真核很多;
3.原核生物有操縱子結構,真核不組成操縱子;
4.大多數真核生物啟動子以正調控為主,原核生物以負調控為主。
「基因」的分子生物學定義:產生一條多肽鏈或功能RNA所必需的全部核苷酸序列。
二、真核生物轉錄調控順式作用元件
(cis-acting element)
定義:影響自身基因表達活性的非編碼DNA序列。
例: 啟動子、增強子、沉默子等
1、啟動子:在DNA分子中,RNA聚合酶能夠識別、結合並導致轉錄起始的序列。
2、增強子
指能使與它連鎖的基因轉錄頻率明顯增加的DNA序列。
SV40的轉錄單元上發現,轉錄起始位點上游約200 bp處有兩段長72 bp的正向重復序列。
增強子特點:
① 增強效應十分明顯,一般能使基因轉錄頻率增加10-200倍
② 增強效應與其位置和取向無關,不論增強子以什麼方向排列(5『→3』或3『→5』),甚至和靶基因相距3 kb,或在靶基因下游,均表現出增強效應;
③大多為重復序列,一般長約50bp,適合與某些蛋白因子結合。其內部常含有一個核心序列:(G)TGGA/TA/TA/T(G),該序列是產生增強效應時所必需的;
④ 增強效應有嚴密的組織和細胞特異性,說明增強子只有與特定的蛋白質(轉錄因子)相互作用才能發揮其功能;
⑤ 沒有基因專一性,可以在不同的基因組合上表現增強效應;
⑥ 許多增強子還受外部信號的調控,如金屬硫蛋白的基因啟動區上游所帶的增強子,就可以對環境中的鋅、鎘濃度做出反應。
3、沉默子
某些基因含有負性調節元件——沉默子,當其結合特異蛋白因子時,對基因轉錄起阻遏作用。
三、反式作用因子(轉錄因子,transcription factor)
(一)定義
能直接或間接地識別或結合在各類順式作用元件上,參與調控靶基因轉錄的蛋白質,也稱為轉錄因子(transcriptional factor,TF)。
如:TFⅡD(TATA)、CTF(CAAT)、SP1(GGGCGG)、HSF(熱激蛋白啟動區)
反式作用因子
識別/結合
順式作用元件中的靶序列
啟動轉錄
例:轉錄因子TFⅡD 識別結合 TATA box
轉錄因子 SP1 識別結合 GC box
轉錄因子 CTF1 識別結合 CCAATbox
(二)反式作用因子的類型
1. 基本轉錄因子(通用轉錄因子)
又稱TATA盒結合蛋白,如TFⅠ、TFⅡ和TFⅢ等。
與RNA pol II 相關的基本轉錄因子
基本轉錄因子(通用轉錄因子)
2. 組織或細胞特異性轉錄因子
EF1因子 紅細胞
Isl-I因子 胰島β細胞
Myo DI因子 骨骼肌細胞
NF-κB因子 B淋巴細胞
DF3因子 乳腺癌細胞
CEA啟動子結合蛋白 CEA陽性的腫瘤細胞
3. 可誘導(incible)的轉錄因子
熱休克轉錄因子(HSTF) 高溫環境
cAMP效應元件結合蛋白(CREBF) cAMP
血清應激因子(SRF) 血清中的生長因子
CD28反應元件結合蛋白 抗原
激活蛋白2(AP-2) 感染與炎症反應
(三)轉錄因子上的幾種
重要結構域
• 反式因子有兩個必需的結構域
1、DNA結合結構域
– 螺旋-轉折-螺旋(Helix-turn-helix,H-T-H)
– 鋅指結構(zinc finger)
– 鹼性-亮氨酸拉鏈(basic - leucine zipper)
– 鹼性-螺旋-環-螺旋(basic – helix /loop /helix,bHLH)
• 螺旋-轉角-螺旋
(helix-turn-helix,HTH)
• HTH的基本結構是兩個α螺旋被一個轉角結構分開。
• α螺旋由短肽鏈組成,肽鏈的氨基酸順序因不同的轉錄因子而不同。
• 其中一個α螺旋識別特異的順式作用元件上的DNA序列,另一個α螺旋則結合在DNA上,調控基因的轉錄。
螺旋-轉折-螺旋結構圖
(2)鋅指結構
定義:是一種常出現在DNA結合蛋白中的結構基元。是由一個含有大約30個氨基酸的環和一個與環上的4個Cys或2個Cys和2個His配位的Zn構成,形成的結構像手指狀。
• 鋅指的N-端部分形成β折疊結構,C-端部分形成α螺旋結構
• 每個α螺旋有兩處識別特異的DNA序列;3個α螺旋結構與一個DNA雙螺旋的深溝(major groove)結合,調控RNA的轉錄。
• α螺旋的氨基酸順序視不同的轉錄因子而不同。
轉錄因子SP1 (GC盒) 、連續的3個鋅指重復結構
(3)鹼性-亮氨酸拉鏈(Leucine zipper)
• 蛋白質之間的相互作用是生命現象的普遍規律之一,在基因表達調控中同樣具有重要意義。
• 亮氨酸拉鏈是蛋白質二聚體化(蛋白質相互作用的一種方式)的一種結構基礎。
• 某些癌基因(如c-jun,v-jun,c-fos,v-fos等)表達產物通過亮氨酸拉鏈形成同源或異源二聚體,大大增加對DNA的結合能力,調控基因表達。
• 亮氨酸拉鏈是一個高亮氨酸組成的α螺旋,每兩個螺圈出現一個亮氨酸,形成拉鏈的一邊。
• 兩個蛋白質因子的α螺旋通過亮氨酸的疏水作用結合在一起形成拉鏈結構
• 在亮氨酸拉鏈近N-端有富含鹼性(帶正電荷)氨基酸殘基的區域,是DNA的結合區。
亮氨酸拉鏈結構
• 二聚體
• 亮氨酸之間相互作用形成二聚體,形成「拉鏈」 。
• 肽鏈氨基端20~30個富含鹼性氨基酸結構域與DNA結合。
這類蛋白質的DNA結合結構域實際是以鹼性區和亮氨酸拉鏈結構域整體作為基礎的。
定義:出現在DNA結合蛋白質和其它蛋白質中的一種結構基元(motif)。當來自同一個或不同多肽鏈的兩個α-螺旋的疏水面(常常含有亮氨酸殘基)相互作用形成一個圈對圈的二聚體結構時就形成了亮氨酸拉鏈。
(4)鹼性-螺旋-環-螺旋helix-loop-helix
2、轉錄激活結構域
• A 酸性激活域 如酵母轉錄因子GCN4,GAL4
• P rich-Gln 如SP1, AP2, oct1, oct2
• Q rich-pro脯 如CTF/NF1
• 不規則的,含雙性-helix
(四)mRNA轉錄激活及其調節
RNA聚合酶II在轉錄因子幫助下,
形成轉錄起始復合物。
9.9 翻譯的調控
一. 5』UTR(untranslated region)結構與翻譯起始的調節
二.蛋白質磷酸化對翻譯效率的影響
三.3』UTR(untranslated region)結構與mRNA穩定性調控
一. 5』UTR(untranslated region)結構與翻譯起始的調節
• 5』UTR通常不到100nt
• 幾乎所有的真核生物和病毒mRNA的5』端都具有帽子結構,其作用
– 保護mRNA免遭5』外切酶降解
– 為mRNA的核輸出提供轉運信號
– 提高翻譯模板的穩定性和翻譯效率
• 實驗證實,對於通過滑動搜索起始的轉錄過程來說,mRNA的翻譯活性依賴於5』端的帽子結構。
二.蛋白質磷酸化對翻譯效率的影響
• eIF-4F的磷酸化能提高翻譯速度
• eIF-2α的磷酸化抑制翻譯起始
三.3』UTR結構與mRNA穩定性調控
• 3』UTR序列及結構調節mRNA穩定性和壽命
• 多聚腺苷酸尾調節翻譯效率
本章教學要求
1.熟悉真核基因組的結構特點及真核基因表達調控的特點。
2.掌握以下概念:順式作用元件、反式作用因子、啟動子、增強子,熟悉沉默子、基本轉錄因子、特異轉錄因子。
3.了解轉錄因子的結構特點。
⑧ 甲基轉移酶的活性與作用
Any o fa group of enzymes that catalyze transamination.
轉氨酶
The inactive or nearly inactive precursor of an enzyme, can be converted to an active enzyme by proteolysis.
酶原,酶的非活性或近似非活性的前體,通過蛋白質水解過程轉變成活性酶
Any enzyme that catalyzes the rearrangement of atoms within amolecule, especially one that causes the transfer of a phosphate group from one carbon atom to another.
歧化酶任何一種在一個分子內能催化原子重新排列的酶,特別是那種引起一個磷酸鹽基從一個碳原子向另一個碳原子轉移的酶
To be transmitted or transferred by or asif by metastasis.
轉移通過或好像通過轉移被傳遞或轉變位置
To combine with the methyl radical.
使甲基化使與甲基根結合
biological methylation of mercury
汞的生物甲基化
Conversion of starch to sugars by the action of enzymes or acids.
澱粉分解通過酶或酸的作用把澱粉轉變為糖
But the PPL researchers have succeeded in knocking out only one of the gene for the enzyme, called alpha1,3galactosyltransferase.
但是,ppl醫療公司的研究人員只是成功地去除了產生這種叫α?1,3半乳糖轉移酶的基因的一個副本。
biological demethylation of mercury
汞的生物反甲基化
microorganisms of enzyme preparation
酶制劑微生物
⑨ 甲基轉移酶的概述
甲基轉移酶 transmethylase,methyl trans-ferase