Ⅰ 戴帽子問題~~推理題
首先考慮簡單情況:如果B看到A和C都是黑帽子,自然就知道自己是白色的了;C同理。二人都不知道自己帽子的顏色,因此:AC至少有一頂白帽子,AB至少有一頂白帽子 (1)根據推論(1)可以知道:如果A是黑帽子,則BC都必然是白帽子(2)※下面假設B先承認自己不知道,即C在知道B不知道的情況下依然不知道自己帽子的顏色。如果(2)成立,那麼B不知道自己的顏色,而A是黑色,如果C也是黑色,那麼B自然就知道自己是白色了。因此C必然不是黑色,所以C是白色,這和C不知道自己的顏色矛盾。因此A是白帽子
Ⅱ 經典邏輯題:黑白帽子
若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)
若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。
Ⅲ 一道經典的推理題 - 黑白帽子問題
1.假定只有一頂黑帽子,那麼戴黑帽子的人看到其他人都是白帽子後就知道了自己是黑帽子,所以他會在第一次關燈打耳光。
2.如果沒有人在第一次關燈打耳光,說明黑帽子數≥2,那麼戴黑帽子的人A看到場上只有一頂黑帽子B,而第一次關燈沒有人打耳光,說明B看到自己不是唯一的黑帽子,A就知道了自己是黑帽子。
3.如果沒有人在第二次關燈打耳光,說明黑帽子數≥3,所以C看到兩個黑帽子AB沒有打耳光,他就能確定自己是黑帽子。
結論,如果有n頂黑帽子,就會有n個人在第n次關燈打耳光
Ⅳ 有關帽子的超難推理題!!!!!
問題如下:有100個犯人,頭天晚上被通知第二天一早要帶著一頂帽子(總共有100頂黑的和100頂白的,帽子是隨機帶的,而且不知道自己頭上的帽子是什 么顏色),排成一列直線隊伍,後面的人能看到前面的所有人帶的帽子的顏色,前面的看不到後面的人的帽子顏色,現在警官讓犯人們先討論下,等明天排隊時,警 官從最後一個人問起直到第一個,「你頭上帶的帽子顏色是黑還是白?」犯人只許說一個字「黑或白」,(說話時沒有任何提示,都是標準的一個音,而且沒有眼神 什麼提示,有的只是頭天晚上想出的方法)犯人說錯直接殺,說對了馬上放了,問討論出一個怎樣的方法使被殺的人數確定最少?
感覺最接近正確的答案:
犯人們先商量好,等排好隊後,每個人都先記下在自己前面人的黑帽子的個數和白帽子的個數.
排在最後面的人的答案是關鍵的,他掌控著所有人的生死大權哦,這樣,他前面所有的人都要記下他的答案,而且要記下他後面每一個人的答案.
比如說:
倒數第一個人,他前面99個人中白色帽子是奇數個數,那他就說自己的帽子白色,這是事先協商好的.
倒數第二個人,他就知道白是奇數,這時如果他前面看到的98個人中白色是偶數的話,那他自己一定就是白色的了,他就要說是白.
倒數第三個人,如果他前面97個人中白色偶數的話,而他後面的人是白色,所以他可以馬上知道自己也是黑色了.
倒數第N個人,以此類推啦....
運氣好的話,一個都不用死哦
奇偶校驗法
Ⅳ 帽子顏色(邏輯推理題)
如果自己戴的也是紅色帽子,一共就兩頂紅色帽子,第三個人就能猜到自己就是黑色帽子了,但是那個人沒有反應說明沒有猜出來,說明自己不是紅色帽子,那麼就是黑色帽子了!
Ⅵ 一道關於帶帽子上的數的邏輯推理問題,急求答案!!!
我也只是猜測
我覺得B和C帽子上都是17
A-34 B-17 C-17
解析:
當B看見A和C頭上的數字時,不確定自己是最大的數還是A是最大的數,也就是說不確定自己是17還是51,所以他不知道自己帽子上的數。
C同理
而當A看見B和C頭上的數字都是17時,又知道自己頭上數字不為0,所以自己的數字一定是兩個數字之和,即為34。因為如果最大數在B和C之間那自己只能為0
綜上所述,B和C均為17
Ⅶ 帽子數字邏輯推理
鬼屁聰明,第一輪就可以猜到咯....
直接把兩人的號碼加起來,有1/3 幾率答對。賭都賭到啦。。。
Ⅷ 邏輯推理題,帽子問題
A是色盲,其所戴帽子為綠色。分析如下:
(1)B和C是等同的,由於不可能存在兩個色盲,故A為色盲;
(2)由於第2次詢問時,B和C都知道了,故所取出的帽子為兩紅一綠;
(3)假設A所戴帽子為紅色,則第1次詢問時,B或C應該有1人知道,這與實際情況「第1次詢問時,A、B和C都不知道」矛盾,故A所戴帽子為綠色。
Ⅸ 推理題:有1位老師,准備3頂白帽子,2頂黑帽子,讓3個學生看到,然後叫他們閉上眼睛,分別給他們戴上
甲可以。丙推斷不出自己帽子的顏色則甲乙兩人的帽子可能是2白或1白1黑,乙也推斷不出自己帽子的顏色則甲的帽子顏色只能為白色,故甲可以推斷出自己帽子的顏色