『壹』 下圖中的是哪個人第一個猜出自己帽子的顏色的,,又是誰第二個猜出自己帽子顏色的,
D猜中了,這是一種邏輯題,A是誰都看不見的所以他很難猜,B和A的情況一樣,都是看不看任何人的,所以猜出的只能在C和D之間出現,而C能看見的只有B,所以他並不知道帽子到底是黑還是白,又因為題中所述是小孩,又因為害怕而不敢亂猜,所以只有D,D可以看見B和C兩個人,因為小孩的思想很單純,所以看到前兩人的帽子顏色順序就很自然的猜出了自己是白色的帽子。
『貳』 四個人面對牆 最高的是牆 兩個人花帽子兩個人白帽子 問誰最先知道自己的帽子顏色。 求高手解答。!n
一句話回答:
C,因為d不能通過b和c的帽子顏色確定自己的帽子顏色,證明b和c的帽子顏色不一樣。(前提是如圖站法)
『叄』 畢業學生的數量和帽子的顏色是怎麼樣的
E 黑色學士帽 0~9
D 銅色(土黃色)學士帽 10~29
C 銀色學士帽 30~49
B 金色學士帽 50~99
A 彩虹學士帽 100~255
『肆』 華羅庚退步解題方法 ,就是三個學生戴帽子,三頂白帽子,兩頂黑帽子
排除法:
這道題的條件有兩個
1,猶豫前一會兒
2,猶豫後一會兒
答案只有三個可能
1三白,
2一白兩黑
3兩白一黑
通過猶豫前一會兒排除2,因為肯定有個白的先說,不會猶豫
通過猶豫後一會兒排除3,如果有個黑的,那麼兩個白的就會根據不會有兩個黑的說出自己是白的,
總而言之,對於神童來說猶豫這么久意味著無法確定,神童之間明白大家都無法確定,而三白就是唯一無法確定的情況.也就是唯一的情況.
『伍』 經典智力題——帽子顏色問題
若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)
若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。
『陸』 帽子的顏色問題講的是什麼
(1)有三頂紅帽子,兩頂白帽子,現將其中三頂給排成一列縱隊的三人每人戴上一頂,每人都只能看到自己前面的人的帽子,而看不到自己和自己後面人的帽子。從後往前問三人同樣的問題:「你戴的帽子是什麼顏色?」最後面的人回答說:「不知道。」接著中間的人也說:「不知道。」然而最後回答問題的站在最前面的人卻做出了肯定的正確回答。問這個人戴的帽子是什麼顏色?回答這個問題需要做正確的邏輯分析。
在提問後,最後面的人回答「不知道」,從中可斷定以下事實:
前面兩個人中至少有一個戴紅色帽子。不然的話,如果前面兩人均戴白帽子,而白帽子只有兩頂,最後面的人就會知道自己戴紅帽子,不會說不知道。這個事實中間的人也可得知,在此基礎上他又回答「不知道」,那麼一定是最前面的人戴著紅帽子。不然的話,最前面的人若戴白帽子,因他與中間的人兩人中至少有一個戴紅帽子,那中間的人就一定戴紅帽子了,中間的人也不會說不知道。於是,最前面的人戴紅色帽子是正確結論。
在這個帽子的顏色問題中,戴著帽子回答問題的三個人應是聰明人,都能正確地進行邏輯推理,並作出正確的判斷。如果有一個智力有問題,或胡亂猜測隨便回答,那麼整個事情就無法正確解釋了。
此問題是一個傳統的邏輯推理問題,人們經常利用這樣的問題考察智力,既要看會不會推理,又要看整個推理過程是不是簡明,還要看推理用的時間。在一個好的問題面前,可以充分顯示人的思維能力。
中國著名數學家華羅庚對上述帽子的顏色問題作了改造,提出下面的問題:
(2)一位老師讓三位聰明的學生看了一下事先准備好的五頂帽子:三頂白色的,兩頂黑色的。然後讓他們閉上眼睛,他替每個學生戴上一頂帽子,並把其餘兩頂藏起來,讓學生睜開眼睛後各自說出自己戴的帽子的顏色。三人睜眼互相看了一下,躊躇了一會兒,覺得為難。繼而異口同聲地說自己頭上戴的是白帽子。問他們是怎樣推演出來的?先看戴帽情況,有兩黑一白、兩白一黑、三白共三種情況。
若第一種情況,戴白帽子的學生一看便能說出自己戴的帽子顏色,而實際上三人睜眼互相看了一下,躊躇了一會兒,沒一人馬上說出,這表明這種情況是不符合現實。
這樣三人都明白其中至多隻有一人戴黑帽子,如果有一人戴黑帽子,另外兩人必會立刻說出自己戴著白色帽子,而不會躊躇且覺得為難。三人均為難說明誰也沒有看見有人戴黑色帽子。那麼三人戴的都是白色帽子。於是三位聰明學生便異口同聲說出自己戴的帽子的顏色。
這個問題初看似乎感到條件不足,然而細一琢磨,「躊躇了一會兒,覺得為難,繼後異口同聲地說」裡面涵義豐富,奧妙無窮。建立在這條件上,便可展開如上推理,層層深入,環環緊扣。
華羅庚推出這一改編的問題,讓人深深體會到了數學大師的內在功力,其中表現出高超的思維技巧。
如果把人數增多,還可提出類似的問題:
(3)四個愛動腦筋的小朋友接受老師的智力測驗,看誰能最快最准確地回答問題。老師讓他們都閉上眼睛,給他們每人戴上一頂帽子,或者是白的,或者是藍的。然後讓他們睜開眼睛,告訴他們:「誰看到的白帽比藍帽多就馬上舉手。然後各位說出自己戴的帽子顏色。」大夥互相看了一下(每個人都看不見自己戴的帽子,但能看清別人戴的帽子),誰也沒舉手,過了一會兒,也沒有人說出自己戴的帽子顏色,其中一個叫小光的學生見大家都不說話,就猜出了自己頭頂上的帽子顏色。問小光戴的是什麼樣的帽子。
再來分情況考慮。
如果恰有兩個人戴白色帽子,另外兩人都會看到兩頂白帽,一頂藍帽。他倆會同時舉起手,而實際上無人舉手,這表明在四個學生中最多隻有一人戴白帽子。
如果只有一個學生戴白帽子,另外三人都會看到一頂白帽,兩頂藍帽,誰也不會舉手。戴白帽子的人看到的是三頂藍帽,也不會舉手。三個戴藍帽的人會想到:「我已看到一頂白帽子,如果我戴的也是白帽,就會有兩人舉手,而事實上沒有舉手,說明我戴的是藍帽。」
可是,仍然沒有人舉手,這就說明一頂白帽也沒有。四人戴的都是藍帽子。
『柒』 最難的智力題
答案在最後
猜帽子1
有三頂紅帽子和兩頂藍帽子。將五頂中的三頂帽子分別戴在A、B、C三人頭上。這三人每人都只能看見其他兩人頭上的帽子,但看不見自己頭上的帽子,並且也不知道剩餘的兩頂帽子的顏色。
問A:"你戴的是什麼顏色的帽子?"
A說:"不知道。"
問B:"你戴的是什麼顏色的帽子?"
B想了想之後,也說:"不知道。"
最後問C。C回答說:"我知道我戴的帽子是什麼顏色了。"
當然,C是在聽了A、B的回答之後而作出推斷的。試問:C戴的是什麼顏色的帽子?
猜帽子2
一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就拍手。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?
猜帽子3
小明、小豐、小蘭三位學生這學期在偵探推理競賽中並列第一,但學校每年只會頒給一個人獎狀,於是老師請他們放學後到辦公室,決定誰拿這個獎狀。
放學後,在辦公室里老師讓他們閉上眼,給他們每人戴了一頂帽子,再讓他們掙開眼,然後說要看看他們的邏輯推理能力,並告訴他們帽子只有綠黃兩種,請看到綠帽子的舉手,誰先說出自己戴的帽子的顏色,就把獎狀頒給誰。
三個人聽後都舉手了。過了一會,小蘭說:「我知道自己戴的是什麼顏色的帽子了。」
請問小蘭戴的是什麼顏色的帽子?
猜帽子4
有3頂橙帽子,4頂青帽子,5頂紫帽子。讓10個人從矮到高站成一隊,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子顏色,只能看見站在前面比自己矮的人的帽子顏色。所以最後一個人可以看見前面9個人頭上帽子的顏色,而最前面那個人誰的帽子都看不見。現在從最後那個人開始,問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。假設最前面那個人戴的是青帽子,他一定會知道自己的帽子顏色,為什麼?
撲克牌(我改編的,與原版的解題思路稍有不同)
1位老師有2個推理能力很強的學生,他告訴學生他手裡有以下的牌
黑桃:4,5,6,7,Q,K
紅心:4,6,7,8,Q
梅花:3,8,J,Q
方塊:2,3,9
然後從中拿出一張牌,告訴了A這張牌的大小,告訴了B這張牌的花色
A:我不知道這張是什麼牌
B:我也不知道這張是什麼牌
A:現在我們可以知道了
請問這張是什麼牌?
撲克牌(升級版)(原版)
1位老師有2個推理能力很強的學生,他告訴學生他手裡有以下的牌
黑桃:2,5,7,9,J,K
紅心:3,4,9,J,K
梅花:5,8,9,Q
方塊:2,7,8
然後從中拿出一張牌,告訴了A這張牌的大小,告訴了B這張牌的花色
A:我不知道這張是什麼牌
B:我知道你不知道這張是什麼牌
A:現在我知道了
B:現在我也知道了
請問這張是什麼牌?
海盜分贓1
5個很聰明的海盜搶到100個金幣,他們決定依次由A,B,C,D,E五個海盜來分
當由A分時,剩下的海盜表決,如果B,C,D,E四人中有一半以上反對就把A扔下海,再由B分……以此類推;如果一半及以上的人同意,就按A的分法
請問A要依次分給B,C,D,E多少才能不被扔下海並且讓自己拿到最多?
海盜分贓2
5個很聰明的海盜搶到100個金幣,他們決定依次由A,B,C,D,E五個海盜來分
當由A分時,如果A,B,C,D,E五人中有一半以上反對就把A扔下海,再由B分……以此類推;如果一半及以上的人同意,就按A的分法
請問A要依次分給B,C,D,E多少才能不被扔下海並且讓自己拿到最多?
海盜分贓3
5個很聰明的海盜搶到100個金幣,他們決定依次由A,B,C,D,E五個海盜來分
當由A分時,剩下的海盜表決,如果B,C,D,E四人中有一半及以上反對就把A扔下海,再由B分……以此類推;如果一半以上的人同意,就按A的分法
請問A要依次分給B,C,D,E多少才能不被扔下海並且讓自己拿到最多?
阿凡提九死一生
古時候有個殘酷的國王,十分嫉妒阿凡提的聰明才智。有一次他抓住了阿凡提,一心想整死他,但又顧及到體面,就故意想了一個自認為天衣無縫的辦法。他對阿凡提說:你現在可以說一句陳述的話,但是如果你說的是真話,我將用絞刑架弔死你,如果你說的是假話,我將用油鍋炸死你。結果阿凡提說出一句話,國王意拿他一點招也沒有。問:阿凡提說的是一句什麼話?
神仙指路
有個智者去找神仙,走到一個三岔路口,不知道往左走還是往右。路口邊站著兩個天使,他倆一個永遠說真話,另一個永遠說假話,現在要求這個智者只能向其中一位天使問一句話,就確定神仙的方位。請問:這個智者怎麼問才能有結果?
阿凡提九死一生
古時候有個殘酷的國王,十分嫉妒阿凡提的聰明才智。有一次他抓住了阿凡提,一心想整死他,但又顧及到體面,就故意想了一個自認為天衣無縫的辦法。他對阿凡提說:你現在可以說一句陳述的話,但是如果你說的是真話,我將用絞刑架弔死你,如果你說的是假話,我將用油鍋炸死你。結果阿凡提說出一句話,國王意拿他一點招也沒有。問:阿凡提說的是一句什麼話?
神仙指路
有個智者去找神仙,走到一個三岔路口,不知道往左走還是往右。路口邊站著兩個天使,他倆一個永遠說真話,另一個永遠說假話,現在要求這個智者只能向其中一位天使問一句話,就確定神仙的方位。請問:這個智者怎麼問才能有結果?
答案見下:
猜帽子1
C戴紅帽子
猜帽子2
我認為是3個人戴黑帽子
分析:假設戴黑帽子的是A、B、C三人,以A的角度思考,A看到B、C戴黑帽子,A認為:第一次關燈時B看到C戴黑帽子,已滿足「黑的至少有一頂」,所以B不能確定自己是否黑帽子,不會拍手,並且如果只有C戴黑帽子,第一次關燈時C就會拍手。但第一次關燈時C沒拍手,這代表C也在等別人拍手,B就知道自己也戴了黑帽子,第二次關燈時B、C就都會拍手。但第二次關燈時也沒拍手,這代表B、C也各自看到2頂黑帽子,A由此推出自己帶了黑帽子。B、C邏輯推理也是如此,其他戴白帽子的人都是如此推理,在第三次關燈時會等著A、B、C拍手,於是第三次關燈時有且僅有三個人會拍手
猜帽子3
小蘭戴綠帽子
分析:首先,由「三個人聽後都舉手」,推出小蘭至少看到一頂綠帽子並且不會有2人戴黃帽子。
情況一:小蘭、小豐戴綠帽子,小明戴黃帽子。小蘭認為:如果自己戴黃帽子,小豐不會舉手,所以自己戴綠帽子。之後小豐也能推理出自己戴綠帽子,但小明推理不出自己戴什麼顏色的帽子,原因不說明了。
情況二:小蘭、小豐、小明戴綠帽子。小蘭認為:小豐看到小明戴綠帽子會舉手,但小豐看不到自己帽子顏色的情況下卻沒有因為小明舉手而推理出自己是戴綠帽子,這代表不光小豐和小明兩人戴綠帽子(即代表不是情況一),所以小蘭戴綠帽子。但小豐和小明推理不出自己戴什麼顏色的帽子
猜帽子4
不知道
撲克牌(我改編的)
梅花3
撲克牌(原版)
方塊8
海盜分贓1
A-97 B-0 C-1 D-2 E-0或A-97 B-0 C-1 D-0 E-2
提示:當扔下ABC後,D就算分D-0,E-100,E也可能不同意再扔下D,因此就算C分C-100,D-0,E-0,D也會同意
海盜分贓2
A-98 B-0 C-1 D-0 E-1
提示:當扔下ABC後,D分D-100,E-0,D就能拿到全部,因此C分C-99,D-0,E-1就行
海盜分贓3
A-97 B-0 C-1 D-1 E-1
阿凡提九死一生
答:國王要炸死我。
解釋:如果這句話是真的,那麼應當執行吊刑,但如果執行吊刑,就反過來證明這句話是假的,是假的就不應當執行吊刑;如果當這句話是假的,那麼應當執行炸刑,但如果執行炸刑,就反過來證明這句話是真的,是真的就不應當執行炸刑。所以吊也不行,炸也不行,國王一言九鼎,只好放了他。
神仙指路
答:這個智者隨便對其中一位天使說——如果我問那位天使神仙在哪邊,他會說哪邊?
解釋:假設之一、神仙在左邊——如果這位天使是說真話的,那麼另一位天使將回答在右邊,而這位天使也將轉告右邊;如果這位天使是說假話的,那麼另一位天使將回答在左邊,而這位天使卻將轉告右邊。假設之二、神仙在右邊——如果這位天使是說真話的,那麼另一位天使將回答在左邊,而這位天使也將轉告左邊;如果這位天使是說假話的,那麼另一位天使將回答在右邊,而這位天使卻將轉告左邊。
結論:不管天使說哪邊,神仙肯定在相反的方向,雖然我們並不知道哪位天使說真話。
啟示:此題其實是一道二元方程式,天使說真說假代表X,神仙在左在右代表Y,回答的兩個解代表Z。我們逆向求解的思路應當是問一句同時牽涉兩位天使的話,使X、Y合作起來推導Z。
『捌』 帽子的顏色是什麼
教師把他最得意的三個學生叫到一起,想測測他們的智力。他先讓三個學生前後站成一排,然後拿出三白兩黑共五頂帽子,讓學生看過後把兩頂黑帽子藏起來,把三頂白帽子給他們戴上。三個學生都看不見自己戴的帽子,但後邊的能看見前邊的,前邊的看不見後邊的。教師讓三個學生說出自己戴的帽子的顏色。經過一段時間的思考後,前邊的學生回答說:我戴的是白色的。他是怎樣知道的?
[答案:他這樣分析:如果我和第二個人戴的都是黑的,後邊的人馬上就能知道自己帽子的顏色,但他沒有回答,說明我和第二個人至少有一個人的帽子是白色。如果我戴的是黑帽子,由於第三個人沒回答,第二個人很快就能推斷出他戴的是白的,但他也沒有回答,說明我戴的不是黑的。]