A. 酒吧一個90後,穿著粉色的衣服,戴個帽子,好像被灌醉了也不知道下葯了,當眾被個人幹完了穿好衣服走出去
請問樓主找到她了嗎?可以的話分享給我把,我也跟你一樣急啊,謝謝好人一生平安,[email protected]
B. 剛才我看幾種色綉紅色米色保蘭色綉有北京長城字樣的帽子,怎麼現在怎麼不見了呢剛才有那個圖片的被隱下
可能是一直更新的,你退出在登錄就看不到了,你應該多搜索一下,可能到最底下的頁面了
C. 看不到自己帽子的顏色
黃色的
我們從最後一個人分析
如果最後一個看到前面9個都帶藍色,那麼就知道自己一定是黃色.
看到有一個人帶黃色帽子,他就無法知道自己的帽子是什麼顏色.
倒數第二人如果前面得8人都是藍色,那麼自己一定是黃色,因為最後一人不知道他帶什麼顏色,那麼自己一定是黃色.
這樣每個人都會同樣的分析.
但只要前面人中有一人帶黃色帽子,他本人就分析不出自己帶什麼顏色的帽子,所以第一個人雖然看不到任何人的帽子顏色,也可以推斷出 自己帶的是黃色帽子.
D. 下載了一個影視軟體不能觀看他要求更新然後更新後就變成另一個軟體軟體的顏色是紫色的可以更新比電視還快
你這是啥軟體?沒見過
不過我最近在用一個軟體今日影視不錯,除了有直播台以外,還有很多的影視綜藝內容。特別是美劇很多,最新劇集更新也快,韓劇韓綜全都有,還不錯的。
E. 帽子顏色問題,求解
C戴的紅帽子
1、只有bc都戴白帽子時,a才知道自己戴的是紅帽子,而a不知道自己戴什麼顏色的帽子,說明bc沒有同戴白帽子。
2、如果c戴的是白顏色的帽子,b根據a的回答能猜出自己戴的是必定是紅帽子。
3、而b不能判斷自己戴什麼顏色的帽子,說明c戴的不是白帽子,因此c猜出自己戴的是紅顏色的帽子。
其實原來的題目是C看不見AB的帽子,B只能看見C的帽子,但並不影響判斷。
F. 經典智力題——帽子顏色問題
若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)
若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。
G. 帽子的顏色問題講的是什麼呢
(1)有三頂紅帽子,兩頂白帽子,現將其中三頂給排成一列縱隊的三人每人戴上一頂,每人都只能看到自己前面的人的帽子,而看不到自己和自己後面人的帽子。從後往前問三人同樣的問題:「你戴的帽子是什麼顏色?」最後面的人回答說:「不知道。」接著中間的人也說:「不知道。」然而最後回答問題的站在最前面的人卻做出了肯定的正確回答。問這個人戴的帽子是什麼顏色?回答這個問題需要做正確的邏輯分析。
在提問後,最後面的人回答「不知道」,從中可斷定以下事實:
前面兩個人中至少有一個戴紅色帽子。不然的話,如果前面兩人均戴白帽子,而白帽子只有兩頂,最後面的人就會知道自己戴紅帽子,不會說不知道。這個事實中間的人也可得知,在此基礎上他又回答「不知道」,那麼一定是最前面的人戴著紅帽子。不然的話,最前面的人若戴白帽子,因他與中間的人兩人中至少有一個戴紅帽子,那中間的人就一定戴紅帽子了,中間的人也不會說不知道。於是,最前面的人戴紅色帽子是正確結論。
在這個帽子的顏色問題中,戴著帽子回答問題的三個人應是聰明人,都能正確地進行邏輯推理,並作出正確的判斷。如果有一個智力有問題,或胡亂猜測隨便回答,那麼整個事情就無法正確解釋了。
此問題是一個傳統的邏輯推理問題,人們經常利用這樣的問題考察智力,既要看會不會推理,又要看整個推理過程是不是簡明,還要看推理用的時間。在一個好的問題面前,可以充分顯示人的思維能力。
中國著名數學家華羅庚對上述帽子的顏色問題作了改造,提出下面的問題:
(2)一位老師讓三位聰明的學生看了一下事先准備好的五頂帽子:三頂白色的,兩頂黑色的。然後讓他們閉上眼睛,他替每個學生戴上一頂帽子,並把其餘兩頂藏起來,讓學生睜開眼睛後各自說出自己戴的帽子的顏色。三人睜眼互相看了一下,躊躇了一會兒,覺得為難,繼而異口同聲地說自己頭上戴的是白帽子。問他們是怎樣推演出來的?先看戴帽情況,有兩黑一白、兩白一黑、三白共三種情況。
若第一種情況,戴白帽子的學生一看便能說出自己戴的帽子顏色,而實際上三人睜眼互相看了一下,躊躇了一會兒,沒一人馬上說出,這表明這種情況是不符合現實。
這樣三人都明白其中至多隻有一人戴黑帽子,如果有一人戴黑帽子,另外兩人必會立刻說出自己戴著白色帽子,而不會躊躇且覺得為難。三人均為難說明誰也沒有看見有人戴黑色帽子,那麼三人戴的都是白色帽子。於是三位聰明學生便異口同聲說出自己戴的帽子的顏色。
這個問題初看似乎感到條件不足,然而細一琢磨,「躊躇了一會兒,覺得為難,繼後異口同聲地說」裡面涵義豐富,奧妙無窮。建立在這條件上,便可展開如上推理,層層深入,環環緊扣。
華羅庚推出這一改編的問題,讓人深深體會到了數學大師的內在功力,其中表現出高超的思維技巧。
如果把人數增多,還可提出類似的問題:
(3)四個愛動腦筋的小朋友接受老師的智力測驗,看誰能最快最准確地回答問題。老師讓他們都閉上眼睛,給他們每人戴上一頂帽子,或者是白的,或者是藍的。然後讓他們睜開眼睛,告訴他們:「誰看到的白帽比藍帽多就馬上舉手。然後各位說出自己戴的帽子顏色。」大夥互相看了一下(每個人都看不見自己戴的帽子,但能看清別人戴的帽子),誰也沒舉手,過了一會兒,也沒有人說出自己戴的帽子顏色,其中一個叫小光的學生見大家都不說話,就猜出了自己頭頂上的帽子顏色。問小光戴的是什麼樣的帽子。
再來分情況考慮。
如果恰有兩個人戴白色帽子,另外兩人都會看到兩頂白帽,一頂藍帽。他倆會同時舉起手,而實際上無人舉手,這表明在四個學生中最多隻有一人戴白帽子。
如果只有一個學生戴白帽子,另外三人都會看到一頂白帽,兩頂藍帽,誰也不會舉手。戴白帽子的人看到的是三頂藍帽,也不會舉手。三個戴藍帽的人會想到:「我已看到一頂白帽子,如果我戴的也是白帽,就會有兩人舉手,而事實上沒有舉手,說明我戴的是藍帽。」
可是,仍然沒有人舉手,這就說明一頂白帽也沒有,四人戴的都是藍帽子。
H. 確定帽子顏色得問題
這一題推導麻煩,共12個帽子,外表看越在前面得人知道的最少,其實越在前面得到的推理條件就越多,關鍵不是自己看到的帽子的數量,而是不說話的人的數量,由最後一個人即10號不知道就可以知道連他自己本身在內的3個帽子的顏色在3+4+5-9-1=2種以上,而前面9個人的帽子的顏色都確定,唯一不知道的是自己的帽子的顏色在2種顏色中的一種!那9號知道前面8個人的帽子的顏色,和10號以及多的兩個帽子的顏色的種類,但10號仍然不知道自己的帽子的顏色,可知帽子顏色的分布應該是有規律的,在前面所有的人中每種顏色的帽子都有,但又不是每種都全部被人帶著,所以10號和剩下2個帽子是每種顏色一種!知道這個就簡單了,依此類推,第一個人雖然看不見自己的帽子也能知道自己的顏色!
I. 有色影視看電影手機不了是為何回事
看不了,有可能是他這個暫時沒有相關的資源,所以導致你看不了,還有一種可能就是你的這個網路有問題也會顯示看不了的。